بررسی تأثیر استفاده طولانی‌مدت از کمپوست پسماند شهری و کود دامی بر روی قابلیت دسترسی فلزات سنگین در خاک‌

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه محیط‌زیست، دانشکده منابع طبیعی، دانشگاه سمنان، سمنان، ایران

چکیده

پسماند شهری یک منبع مقرون‌به‌صرفه و باارزشی از مواد آلی برای خاک‌های کشاورزی است. در سال‌های اخیر کمپوست پسماند شهری به‌طور گسترده‌ای در بخش کشاورزی به‌عنوان یک بهبوددهنده خاک و نیز به‌عنوان یک کود استفاده شده است، ولی کاربرد بیش ‌از حد کودهای آلی و معدنی در تولید محصولات گلخانه‌ای منجر به تجمع فلزات سنگین در خاک و خطرات سلامتی برای انسان می‌شود. بنابراین این پژوهش با هدف بررسی تأثیر کاربرد کمپوست پسماند شهری و کود دامی بر روی فلزات سنگین خاک انجام شد. همچنین خطرات بهداشتی ناشی از مصرف خیار کشت‌ شده در این خاک‌ها ارزیابی شد. در این پژوهش، غلظت فلزات سنگین کادمیوم، مس، نیکل، سرب و روی در خاک، تحرک عنصر، فراهمی زیستی، جزء‌بندی فلزات به همراه اثرات آلودگی این فلزات در خاک گلخانه و جذب این فلزات توسط گیاه خیار پس از 3 سال کشت متوالی و کاربرد کمپوست پسماند شهری و کود دامی در قالب طرح بلوک‌های کاملاً تصادفی در سه تکرار در یک گلخانه‌ای واقع در جنوب استان تهران بررسی شد. همچنین شاخص‌های آلودگی محیطی نیز ارزیابی شد. نتایج نشان داد که کاربرد کمپوست پسماند شهری و کود دامی، سبب افزایش غلظت کل و قابل‌استخراج فلزات سنگین در خاک شده است. با این ‌وجود غلظت فلزات اندازه‌گیری شده در حد مجاز غلظت فلزات سنگین در خاک‌های ایران است. فلزات مس و روی به‌ترتیب به‌عنوان متحرک‌ترین فلزات در خاک شاهد و خاک‌های تیمار شده با کمپوست پسماند شهری و کود دامی شناسایی شدند. مقدار سرب mg kg-1 2/26 و کادمیوم mg kg-1 0/60 در میوه خیار کشت‌ شده در خاک‌های تیمار شده با کمپوست پسماند شهری بیش از مقدار حد مجاز برای سبزیجات خوراکی بود. بر اساس نتایج به‌دست ‌آمده از شاخص خطر سلامتی برای سرب و مس، مصرف خیار کشت‌ شده در خاک‌های تیمار شده با کمپوست پتانسیل بالایی برای به خطر انداختن سلامتی بزرگ‌سالان و کودکان را دارد. نتایج این بررسی نشان داد که علی‌رغم کاربرد سه‌ساله کمپوست پسماند شهری و کود دامی، غلظت فلزات سنگین اندازه‌گیری شده بیش از حد مجاز نبوده است. با این‌ حال، با در نظر گرفتن قابلیت فراهمی زیستی بالای فلزات سنگین، کاربرد مکرر کمپوست پسماند شهری خطرات تجمع تدریجی فلزات سنگین در خاک در طی زمان را به‌همراه خواهد داشت. بنابراین اندازه‌گیری غلظت‌های کل و قابل‌استخراج فلزات سنگین و تعیین فاکتور تحرک هنگام ارزیابی اثرات احتمالی بر عملکرد و جذب فلزات توسط گیاه و تعیین شاخص‌های کیفیت خاک، اهمیت ویژه‌ای دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effect of Long-term Municipal Waste and Manure Application on Soil Heavy Metal Availability in Soil

نویسنده [English]

  • Somayeh Moharami
Assist. Prof., Dept. of Environment, Faculty of Natural Resources, Semnan University, Semnan, Iran
چکیده [English]

Municipal waste is a cost-effective and valuable source of organic matter for agricultural soils. In recent years, MSW compost has been widely used in agriculture as a soil conditioner and fertilizer. However, the excessive use of organic and mineral fertilizers in the production of greenhouse crops leads to the accumulation of heavy metals in the soil and health risks for humans. Therefore, this study investigated the effect of the municipal waste and manure application on heavy metals in the soil. Also, the health risks for humans were evaluated through the consumption of cucumber cultivated in these soil. In this study, the concentration of heavy metals Cd, Cu, Ni, Pb and Zn in soil, mobility of metals, bioavailability, fractionation of metals, effects of pollution in the greenhouse soil and uptake of these metals by cucumber plant following 3 cultivation years of application of municipal waste compost and manure were studied in a randomized complete block design with three replicates in a greenhouse located in the south of Theran province. Also, environmental pollution risks were evaluated. The results showed that the application of municipal waste compost and manure increased both the total and available concentration of heavy metals in the soil. However, the concentration of the measured metals was at the permissible limit of the concentrations of heavy metals in Iranian soils. Copper and Zn were detected as the most mobile metals in control and treated soils with municipal waste compost and Manure, respectively. The amount of Pb (2.26 mg kg-1) and Cd (0.06 mg kg-1) in cucumber fruit in treated soil with municipal waste exceeded the limit value for edible vegetables. Based on the results obtained from the health risk index, Pb and Cu represented a high potential risk for the health of adults and children by consuming cucumbers in compost-treated soils. The results of this study showed that despite the three-year application of municipal waste compost and manure, the concentration of heavy metals measured was not higher than the allowed guideline level. However considering the high bioavailability of heavy metals, repeated application of municipal waste compost would carry a risk of gradual accumulation in the soil over time. Therefore, measuring the total and extractable concentration of heavy metals and metal mobility when assessing likely effects on plant yields and metal uptakes and settings soil quality criteria is important.

کلیدواژه‌ها [English]

  • Municipal Solid Waste
  • Heavy Metal
  • Fractionation
  • Health Risk Index
  • Mobility Factor
Afyuni, M. 2013. Soil Quality Standards and its Guides, Office of Vice Human Environment, Water and Soil Office. Tehran, Iran. (In Persian)
Alvarenga, P., Mourinha, C., Farto, M., Santos, T., Palma, P., Sengo, J., et al. 2015. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: benefits versus limiting factors. Waste Management, 40, 44-52. https://doi.org/10.1016/j.wasman.2015.01.027.
Alvarez, A. E., Callejon, M., Jimenez, J. C. & Ternero, M. 2002. Heavy mtal extractable forms in sludge from wastewater application plants. Chemosphere, 47, 765-775. http://dx.doi.org/10.1016/S0045-6535(02)00021-8.
Anegbe, B., Okuo, J. M., Ewekay, E. O. & Ogbeifun, D. E. 2014. Fractionation of lead-acid battery soil amended with Biochar. Bayero Journal of Pure and Applied Sciences, 7(2), 36-43. http://dx.doi.org/10.4314/bajopas.v7i2.8.
Asensio, V., Abreu-Junior, C. H., Da Silva, F. C. & Chitolina, J. C. 2018. Evaluation of chemical extractants to assess metals phytoavailability in Brazilian municipal solid waste composts. Environmental Pollution, 243, 1235-1241. https://doi.org/10.1016/j.envpol.2018.09.100.
Ban-Nai, T. & Muramatsu, Y. 2002. Transfer factors of radioactive Cs, Sr, Mn, Co and Zn from Japanese soils to root and leaf of radish. Journal of Environmental Radioactivity, 63(3), 251-264. https://doi.org/10.1016/S0265-931X(02)00032-2.
Beckett, P. H. T., Davis, R. D., & Brindley, P. 1979. The disposal of sewage sludge onto farmland: the scope of the problems of toxic elements. Water Pollution Control (Maidstone, UK), 78, 419-445.
Bolan, S., Kunhikrishnan, A., Seshadri, B., Choppala, G., Naidu, R., Bolan, N. S., et al. 2017. Sources, distribution, bioavailability, toxicity, and risk assessment of heavy metal (loid)s in complementary medicines. Environment International, 108, 103-118. https://doi.org/10.1016/j.envint.2017.08.005.
Bose, S., Jain, A., Rai, V. & Ramanathan, A. L. 2008. Chemical fractionation and translocation of heavy metals in Canna indica L. grown on industrial waste amended soil. Journal of Hazardous Material, 160(1), 187-193. http://dx.doi.org/10.1016/j.jhazmat.2008.02.119.
Chabukdhara, M., Gupta, S. K., Kotecha, Y. & Nema, A. K. 2017. Groundwater quality in Ghaziabad district, Uttar Pradesh, India: multivariate and health risk assessment. Chemosphere, 179, 167-178. https://doi.org/10.1016/j. chemosphere.2017.03.086.
Chaney, R. L., Ryan, J. A.  & Brown, S. L. 1999. Environmentally acceptable endpoints for soil metals. In: Anderson, W. C., Loehr, R. C. & Smith, B. P. (Eds.) Environmental Availability in Soils: Chlorinated Organics, Explosives, Metals. American Academy of Environmental Engineering: Annapolis, MD, PP. 111-154.
Chorom, M., & Aghaei Foroushani, M. 2007. Effects of amended sewage sludge application on yield and heavy metal uptake of barley: a case study of Ahvaz sewage treatment plant. Journal of Water and Wastewater, 18(2), 53-63. (In Persian)
Choudhary, M., Panday, S. C., Meena, V. S., Singh, S., Yadav, R. P., Mahanta, V., et al. 2018. Long-term effects of organic manure and inorganic fertilization on sustainability and chemical soil quality indicators of soybean-wheat cropping system in the Indian mid-Himalayas. Agriculture, Ecosystems and Environment, 257, 38-46. https://doi.org/10.1016/j.agee.2018.01.029.
Ding, H., Zhang, Q., Xu, H., Yu, X., Chen, L., Wang, Z., et al.  2021. Selection of copper and zinc dosages in pig diets based on the mutual benefit of animal growth and environmental protection. Ecotoxicology and Environmental Safety, 216, 112177. https://doi.org/10.1016/j.ecoenv.2021.112177.
Domínguez, M., Núñez, R. P., Piñeiro, J. & Barral, M. T. 2019. Physicochemical and biochemical properties of an acid soil under potato culture amended with municipal solid waste compost. International Journal of Recycling of Organic Waste in Agriculture, 8, 171-178. https://doi.org/10.1007/s40093-019-0246-x.
Fadina, O. O., Nwanguma, C. S., Fayinminnu, O. O. & Daodu, B. J. 2021. Heavy metal in cucumber (Cucumis sativus L.) as influenced by organic and inoganic fertilisers. Ethiopian Journal of Environmental Studies and Management, 14(6), 694-704. https://ejesm.org/doi/v14i6.2.
FAO/WHO. 2011. Food Standards Programme Codex Committee on Contaminants in Foods, Food CF.5 INF.1. 5th Ed. The Hague, The Netherlands.
Gamliel, G., Farrag, K., Rovira, P. S., Nigro, F. & Senesi, N. 2016. Greenhouse and field studies on Cr, Cu, Pb and Zn phytoextraction by Brassicanapus from contaminated soils in the Apulia region, Southern Italy. Geoderma, 160, 517-523. https://doi.org/10.1016/j.geoderma.2010.10.023.
Garcia-Delgado, M., Rodriguez-Cruz, M. S., Lorenzo, L. F., Arienzo, M. & Sanchez-Martin, M. J. 2007. Seasonal and time variability of heavy metal content and of its chemical forms in sewage sludges from different wastewater application plants. Science of The Total Environment, 328, 82-92.
https://doi.org/10.1016/j.scitotenv.2007.04.009.
Ghaffari Nejad, S. A. 2017. Greenhouse cucumber response to different levels and sources of organic fertilizer and the effect of these fertilizers on some characteristics soil. Soil and Plant Interactions (Journal of Science and Technology of Greenhouse Culture), 8(2), 67-79. (In Persian)
Glab, T., Zaleski, T., Erhart, E. & Hartl, W. 2008. Effect of biowaste compost and nitrogen fertilization on macroporosity and biopores of Molli-gleyic Fluvisol soil. International Agrophysics, 22, 303-311.
Gupta, S. K., Roy, S., Chabukdhara, M., Hussain, J. & Kumar, M. 2019. Risk of metal contamination in agriculture crops by reuse of wastewater: an ecological and human health risk perspective. In: Singh, R. P., Kolok, A. S. & Bartlet-Hunt, S. L. Water Conservation, Recycling and Reuse: Issues and Challenges. Singapore: Springer. 55-79. https://doi.org/10.1007/978-981-13-3179-4_3.
Hakanson, L. 1980. An ecological risk index for aquatic pollution control: a sedimentological approach. Water Research, 14, 975-1001. https://doi.org/10.1016/0043-1354(80)90143-8.
Hu, W., Chen, Y., Huang, B. & Niedermann, S. 2014. Health risk assessment of heavy metals in soils and vegetables from a typical greenhouse vegetable production system in China. Human and Ecological Risk Assessment, 20(5), 1264-1280. https://doi.org/10.1080/10807039.2013.831267.
Hu, W., Huang, B., Tian, K., Holm, P. E. & Zhang, Y. 2017. Heavy metals in intensive greenhouse vegetable production systems along Yellow Sea of China: levels, transfer and health risk. Chemosphere, 167, 82-90. https://doi.org/10.1016/j.chemosphere.2016.09.122.
Hu, Z., Lane, R. & Wen, Z. 2009. Composting clam processing waste in a laboratory and pilot scale in vessel system. Waste Management, 29, 180-185. https://doi.org/10.1016/j.wasman.2008.02.016.
Huang, X., Li, T., Yu, H., Zheng, Z. & Zhang, X. 2011. Potential risks of heavy metal pollution in greenhouse soils cultivated for different periods. 5th International Conference on Bioinformatics and Biomedical Engineering, (iCBBE), Wuhan, China. https://doi.org/10.1109/icbbe.2011.5781595.
Institute of Standards and Industrial Research of Iran (ISIRI). 2010. Food and Feed-Maximum Limit of Heavy Metals. Iran: ISIRI No. 12968. 210-212.
Jalali, M. & Hemati Matin, N. 2019. Nutritional status and risks of potentially toxic elements in some paddy soils and rice tissues. International Journal Phytoremediation, 21, 111-119. https://doi.org/10.1080/15226514.2018.1474436.
Jalali, M. & Karimi Mojahed, J. 2020. Assessment of the health risks of heavy metals in soils and vegetables from greenhouse production systems in Iran. International Journal of Phytoremediation, 22(8), 834-848. https://doi.org/10.1080/15226514.2020.1715917.
Kalavrouziotis, I. K., Koukoulakis, P. & Kostakioti, E. 2012. Assessment of metal transfer factor under irrigation with treated municipal wastewater. Agricultural Water Management, 103, 114-119. http://dx.doi.org/10.1016/j.agwat.2011.11.002.
Khan, S., Rehman, S., Khan, A. Z., Khan, M. A. & Shah, T. 2010. Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotoxicology and Environental Safety, 73, 1820-1827. https://doi.org/10.1016/j.ecoenv.2010.08.016.
Kusin, F. M., Azani, N. N. M., Hasan, S. N. M. S. & Sulong, N. A. 2018. Distribution of heavy metals and metalloid in surface sediments of heavily -mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. CATENA, 165, 454-464. https://doi.org/10.1016/j.catena.2018.02.029.
Lere, B. K., Basira, I., Abdulkadir, S., Tahir, S. S., Ari, H. A. & Ugya, A. Y. 2021. Health risk assessment of heavy metals in irrigated fruits and vegetables cultivated in selected farms around Kaduna metropolis, Nigeria. Egyptian Journal of Basic and Applied Sciences, 8(1), 317-329. https://doi.org/10.1080/2314808X.2021.1992956.
Li, C., Lan, W., Jin, Z., Lu, S., Du, J., Wang J., et al. 2023. Risk of heavy metal contamination in vegetables fertilized with mushroom residues and swine sanure. Sustainability, 15, 10984. https://doi.org/10.3390/su151410984.
Li, L. F., Xi-Bai, Z., Ling-Yu, B., Xu-Rong, M., Jia-Bo, Y. & Liu-Jie, H. 2009. Cadmium accumulation in vegetable plantation land soils under protected cultivation: a case study. Communication of Soil Science and Plant Analysis, 40(13-14), 2169-2184. https://doi.org/10.1080/00103620902960658.
Lindsay, W. L. & Norvell, W. A. 1978. Development of a DTPA test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x.
Liu, X., Song, Q., Tang, Y., Li, W., Xu, J., Wu, J., et al. 2013. Human health risk assessment of heavy metals in soil–vegetable system: a multi-medium analysis. Science of The Total Environment, 463, 530–540. https://doi.org/10.1016/j.scitotenv.2013.06.064.
Marjovvi, A. & Mashayekhi, P. 2019. Effect of sewage sludge and municipal compost application on bio availability of soil nutrients in onion (Allium cepa L.) cultivation. Environmental Sciences, 17(3), 189-208. (In Persian). https://doi.org/10.29252/envs.17.3.189.
McBride, M. B., Shayler, H. A., Spliethoff, H. M., Mitchell, R. G., Marquez-Bravo, L. G., Ferenz, G. S., et al. 2014. Concentrations of lead, cadmium and barium in urban garden-grown vegetables: the impact of soil variables. Environment Pollution, 194, 254-271. https://doi.org/10.1016/j.envpol.2014.07.036.
Meena, M. D., Joshi, P. K., Jat, H. S., Chinchmalatpure, A. R., Narjary, B., Sheoran, P., et al. 2016. Changes in biological and chemical properties of saline soil amended with municipal solid waste compost and chemical fertilizers in a mustard–pearl millet cropping system. Catena, 140, 1-8. https://doi.org/10.1016/j.catena.2016.01.009.
Mir Seied Hoseini, H., Ivani, R. & Savabeghi, Gh. 2015. The effect of sources and various amounts of organic fertilizer on bioavailability of Cu and Zn in soil. Agronimy Journal (Pajouhesh and Sazandegi), 108, 8-16. (In Persian). https://doi.org/10.22092/AJ.2015.106652.
Paradelo, R., Villada, A. & Barral, M. T. 2018. Chemical fractionation of trace elements in a metal-rich amphibolite soil amended with municipal solid waste composts. Waste and Biomass Valorization, 9, 1935-1943. https://doi.org/10.1007/s1264 9-017-9940-y.
Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F. & Kim, K. H. 2019. Heavy metals in food crops: health risks, fate, mechanisms, and management. Environment International, 125, 365-385. https://doi.org/10.1016/j.envint.2019.01.067.
Rowell, D. L. 1994. Soil Science: Methods and Applications. Longman Group, Harlow, UK.
Roy, E. D., Esham, M., Jayathilake, N., Otoo, M., Koliba, C., Wijethunga, I. B., et al. 2021. Compost quality and markets are pivotal for sustainability in circular food-nutrient systems: a case study of Sri Lanka. Frontiers in Sustainable Food Systems, 5, 748391. https://doi.org/10.3389/fsufs.2021.748391.
Sharifi, M., Afyuni, M., & Khoshgoftarmanesh, A. H. 2011. Effects of animal manure, sewage sludge, and cadmium chloride on cadmium uptake of corn shoots. Journal of Water and Wastewater, 21(4), 98-103. (In Persian)
Siles-Castellano, A. B., López, M. J., López-González, J. A., Suárez-Estrella, F., Jurado, M. M., Estrella-González, M. J., et al. 2020. Comparative analysis of phytotoxicity and compost quality in industrial composting facilities processing different organic wastes. Journal of Cleaner Production, 252, 119820. https://doi.org/10.1016/j.jclepro.2019.119820.
Sims, J. T. 1996. Lime Requirment Methods of Soil Analysis, Parts Chemical Methods. Madision Wisconsin, USA.
Sipos, P. 2009. Distribution and sorption of potentially toxic metals in four forest soils from Hungary. Central European Journal of Geosciences, 1(2), 183-192. https://doi.org/10.2478/v10085-009-0009-4.  
Smith, S. 2009. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environment International, 35, 142-156. https://doi.org/10.1016/j.envint.2008.06.009.
Song, H., Guo, J., Ren, T., Che, Q., Li, B. & Wang, J. 2012. Increase of soil pH in a solar GH vegetable production system. Soil Science Society of America Journal, 76(6), 2074–2082. https://doi.org/10.2136/sssaj2011.0445.
Srivastava, V., Ferreira De Araujo, A. S., Vaish, B., Bartelt-Hunt, S., Pooja Singh, P. & Singh, R. P. 2016. Biological response of using municipal solid waste compost in agriculture as fertilizer supplement. Reviews in Environmental Science Biotechnolgy, 15(4), 677–696. https://doi.org/10.1007/S11157-016-9407-9.
Tessier, A., Campbell, P. G. C. & Bisson, M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844-851. https://doi.org/10.1021/ac50043a017.
The Second Report Evaluation of the Strategy in the Direction of Monitoring the Implementation of Iran's General Environmental Policies. 2019. Environmental Committee of the Infrastructure and Production Commission of the Nizam Interest Identification Complex. (In Persian)
Topcuoğlu, B. 2016. The effect of long-term municipal solid waste compost applications on soil metal bioavailability and environmental risks. International Journal of Advances in Agricultural and Environmental Engineering, 3(1), 201-207. https://doi.org/10.15242/IJAAEE.AE0416123.
Udousoro, I. I. & Essien, M. E. 2015. Transfer of metals from soil to cucumis sativus fruit and possible health risk assessment under actual filed condition. African Journal of Food, Agriculture, Nutrition and Development, 15(3), 10077-10098. https://doi.org/10.18697/ajfand.70.15265.
Integrated Risk Information System. 2007. United States, Environmental Protection Agency (USEPA).
Ur Rehman, Z., Khan, S., Tahir Shah, M., Brusseau, M. L., Akbar Khan, S. & FB. 2018. Transfer of heavy metals from soils to vegetables and associated human health risks at selected sites in Pakistan. Pedosphere, 28, 666-679.
USEPA. 1989. Risk Assessment Guidance for Superfund. Human Health Evaluation Manual., Part A. EPA/540/1- 89/002. Office of Health and Environmental Assessment, Washington, DC, USA.
Xu, L., Lu, A., Wang, J., Ma, Z., Pan, L., Feng, X., et al. 2015. Accumulation status, sources and phytoavailability of metals in greenhouse vegetable production systems in Beijing, China. Ecotoxicology and Environental Safety, 122, 214-220. https://doi.org/10.1016/j.ecoenv.2015.07.025.
Yang, L. Q., Huang, B., Mao, M. C., Yao, L. P., Hickethier, M. & Hu, W. Y. 2015. Trace metal accumulation in soil and their phytoavailability as affected by greenhouse types in north China. Environmental Science and Pollution Research, 22(9), 6679-6686. https://doi.org/10.1007/s11356-014-3862-z.
Yang, Q. W., Xu, Y., Liu, S. J., He, J. F. & Long, F. Y. 2011. Concentration and potential health risk of heavy metals in market vegetables in Chongqing, China. Ecotoxicology and Environental Safety, 74(6), 1664-1669. https://doi.org/10.1016/j.ecoenv.2011.05.006.
Yang, X., Li, Q., Tang, Z., Zhang, W., Yu, G., Shen, Q. & Zhao, F. J. 2017. Heavy metal concentrations and arsenic speciation in animal manure composts in China. Waste Management, 64, 333-339. https://doi.org/10.1016/j.wasman.2017.03.015.
Yusuf, K. A. 2007. Sequental extraction of lead, copper, cadmim and zinc in soils near ojota waste site. Journal of Agronomy, 6(2), 331-337. http://dx.doi.org/10.3923/ja.2007.331.337.
Zhang, H., Huang, B., Dong, L., Hu, W., Akhtar, M. S. & Qu, M. 2017. Accumulation, sources and health risks of trace metals in elevated geochemical background soils used for greenhouse vegetable production in southwestern China. Ecotoxicology and Environental Safety, 137, 233-239. https://doi.org/10.1016/j.ecoenv.2016.12.010.
Zhang, R., Gu, J., Wang, X. & Li, Y. 2020. Antibiotic resistance gene transfer during anaerobic digestion with added copper: important roles of mobile genetic elements. Science of The Total Environment, 743, 140759. https://doi.org/10.1016/j.scitotenv.2020.140759.
Zhen, H., Jia, L., Huang, C., Qiao, Y., Li, J., Li, H., et al. 2020. Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production. Environmental Pollution, 263, 114552. https://doi.org/10.1016/j.envpol.2020.114552.
Zhu, T., Zhang, J. & Cai, Z. 2011. The contribution of nitrogen transformation processes to total N2O emissions from soils used for intensive vegetable cultivation. Plant and Soil, 343(1-2), 313-327. https://doi.org/10.1007/s11104-011-0720-3.
Zhuang, P., McBride, M. B., Xia, H., Li, N. & Li, Z. 2009. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, south China. Science of The Total Environment, 407(5), 1551-1561. https://doi.org/10.1016/j.scitotenv.2008.10.061