بررسی تأثیر توأم امواج مایکرویو و پرسولفات در حذف پنتاکلروفنل از فاضلاب سنتتیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی بهداشت محیط، مرکز تحقیقات علوم بهداشتی، دانشکده بهداشت، دانشگاه علوم پزشکی همدان

2 دانشجوی کارشناسی ارشد مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی همدان

3 استادیار گروه مهندسی بهداشت محیط، مرکز تحقیقات عوامل احتماعی مؤثر بر سلامت، دانشکده بهداشت، دانشگاه علوم پزشکی همدان

4 استاد گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی همدان

چکیده

پنتاکلروفنل یکی از مهم‌ترین آلاینده‌های زیست‌محیطی است که با وجود مشخص شدن ماهیت خطرناک آن به وفور در صنعت مورد استفاده قرار می‌گیرد. از این رو حذف آن در محیط‌های آبی به‌دلیل سمیت و اثرات نامطلوب بهداشتی آن توصیه شده است. در مطالعه حاضر، حذف پنتاکلروفنل با استفاده از یک دستگاه مایکروویو خانگی تغییر شکل یافته با و بدون استفاده از پرسولفات به‌عنوان اکسید کننده مورد بررسی قرار گرفت. تأثیر پارامترهای مختلف بهره‌برداری نظیر pH محلول، غلظت پرسولفات و شدت انرژی مایکروویو مورد مطالعه قرار گرفت. غلظت باقیمانده پنتاکلروفنل با استفاده از دستگاه اسپکتروفتومتر در طول موج 500 نانومتر تعیین شد. نتایج آزمایش‌ها نشان داد که میزان حذف این ماده آلی به‌عوامل محیطی از جمله pH محیط، غلظت ماده اکسید کننده و شدت انرژی مایکروویو بستگی دارد. شرایط بهینه بهره‌برداری به‌منظور حذف این ماده شیمیایی در pH برابر 11، غلظت 02/0 مول در لیتر پرسولفات و شدت انرژی 600 وات حاصل شد. همچنین نتایج تجزیه مستقیم پنتاکلروفنل با امواج مایکروویو بدون افزودن پرسولفات پس از طی زمان 30 دقیقه، 2 درصد بود. نتایج به‌دست آمده از این مطالعه نشان داد که حذف پنتاکلروفنل به‌وسیله مایکروویو/پرسولفات و امواج مایکرویو از واکنش‌های درجه اول تبعیت نموده و میزان ثابت تجزیه به‌ترتیب 093/0 و 00066/0 بر دقیقه بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Removal of Pentachlorophenol Using Microwave Assisted Persulfate from Synthetic Wastewater

نویسندگان [English]

  • Ghorban Asgari 1
  • Afsaneh Chavoshani 2
  • Abdolmotaleb Seid mohammadi 3
  • Alireza Rahmani 4
1 Assist. Prof., of Envirinmental Healt Engineering, Hamadan University of Medical Sciences, Hamadan Iran
2 M. Sc student of Environmental Health Engineering, Hamadan University of Medical Sciences
3 Assist. Prof., Environmental Health Engineering, Hamadan University of Medical Sciences, Hamadan, Iran
4 Prof., of Environmental Health Engineering, Hamadan University of Medical Sciences
چکیده [English]

Pentachlorophenol (PCP) is an important class of environmental pollutants which is excessively used in industry in spite of strong evidence about its hazards. Therefore, the removal of PCP from aqua solution is recommended due to its toxicity and health risks. In the present study, the removal of PCP using a modified domestic microwave (MW) oven alone and in combination with persulfate (MW/PS) was investigated. The effects of operational parameters such as pH of solution, the power of microwave radiations and the amount of persulfate concentration were studied. A spectrophotometer was used for determining of the concentration of pentachlorophenol. The experimental results showed that the removal of PCP was influenced by many factors, such as the pH value, the amount of persulfate and microwave power. The optimum conditions for the best removal rate were obtained at pH=11, a persulfate concentration of 0.02mol/L and microwave irradiation power of about 600W for MW/PS system at constant PCP concentration.  Also, the direct degradation results showed that the removal of PCP was 2% in MW system without PS after 30 min of MW irradiation. The removal of PCP by MW/PS and MW alone were follow first order rate decay kinetics and the rate constants were 0.093 and 0.00066 min-1, respectively.

کلیدواژه‌ها [English]

  • Pentachlorophenol
  • Microwave
  • Persulfate
  • radical
1. Navarro, A. E., Cuizano, N. A., Lazo, J. C., Sun-Kou, M. R., and Llanos, B. P. (2009).“ Comparative study of the removal of phenolic compounds by biological and non-biological adsorbents.” J. Hazard. Mater., 164 (2-3), 1439-1446.
2. Jou, C. J., and Wu, C. R. (2008). “Granular activated carbon coupled with microwave energy for treating pentachlorophenol‐containing wastewater.” J. Environ prog., 27(1),111-116.
3. Jorens, P. G., and Schepens, P. J. C. (1993). “Human pentachlorophenol poisoning.” J. Hum.  and  Exp.  Toxicol., 12(6), 479-495.
4. Malakootian, M., and Asadi, M. (2011). “Efficiency of fenton oxidation process in of phenol  in aqueous solutions.” J. of Water and Wastewater., 79, 46-52. (In Persian).
5. Movahedyan, H., Seid Mohammadi, A. M., and Assadi, A. (2009). “Comparison of different advanced oxidation processes degrading p-Chlorophenol in aqueous solution.” Iran. J. Environ. Health Sci. Eng., 6(3), 153-160.
6. Seid Mohammadi, A. M., and Movahedian, H. (2011).“ p-Chlorophenol oxidation in industrial effluent by ultrasonic/fenton technology.” J. of Water and Wastewater, 80, 43-49. (In Persian)
7. Zhang, Z., Shan, Y., Wang, J., Ling, H., Zang, S., Gao, W., Zhao, Z., and Zhang, H. (2007). “Investigation on the rapid degradation of congo red catalyzed by activated carbon powder under microwave irradiation.” J. Hazard. Mater., 147(1-2), 325-333.
8. Jones, D., Lelyveld, T., Mavrofidis, S., Kingman, S., and Miles, N. (2002). “Microwave heating applications in environmental engineering--a review.” J. Resour Conserv Recy., 34(2), 75-90.
9. Robinson, J., Kingman, S., Irvine,  D., Licence, P., Smith, A., Dimitrakis, G., Obermayer,  D., and Kappe, C. O.(2010). “Understanding microwave heating effects in single mode type cavities- theory and experiment.” J. Phys Chem., 12(18), 4750-4758.
10. Lin, L., Yuan, S., Chen, J., Xu, Z., and Lu, X. (2009). “ Removal of ammonia nitrogen in wastewater by microwave radiation.” J. Hazard. Mater., 161 (2- 3),1063-1066.
11. Zhang, L., Guo, X., Yan, F., Su, M., and Li, Y. (2007). “Study of the degradation behavior of dimethoate under microwave irradiation.” J. Hazar.Mater., 149(3), 675-679.
12. Shiying, Y., Ping, W., Xin, Y., Guang, W., Wenyi, Z., and Liang, S.H. (2009). “A novel advanced oxidation process to degrade organic pollutants in wastewater microwave-activated persulfate oxidation.” J. Environment. Sci., 21(9), 1175-1180.
13. Lee, Y.C., Lo, C.L., Chiueh, P.T., and Chang, D.G. (2009). “Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate.” J.Water Res., 43, 2811-2816.
14. Xu, Q., Ju, Y., and Ge, H. (2013). “Oxidative degradation of dimethyl phthalate (DMP) by persulfate catalyzed by Ag+ combined with microwave irradiation.” J. Advanced Materi Res, 610, 1209-1212.
15. Yin, G., Liao, P. H., and Lo, K. V. (2007). “An ozone/hydrogen peroxide/microwave-  enhanced advanced oxidation process for sewage sludge treatment.” J. Environ.Sci. Health, Part A., 42(8), 1177-1181.
16. Yang,  S., Wang, P., Yang, X., Shan, L., Zhang, W., Shao, X., and Niu,  R. (2010). “Degradationefficiencies of azo dye Acid Orange 7 by the interaction of heat, UV andanions with common oxidants: Persulfate, peroxymonosulfate and  hydrogen peroxide.” J. Hazard. Mater., 179(1), 552-558.
17. Block, P. A., Brown, R. A., and Robinson, D. (2004). “Novel activation technologies for sodium persulfate in situ chemical oxidation.” Proceedings of the Fourth International Conference on the Remediation of Chlorinated and Recalcitrant Compound, U.S. Department of Energy 1000 Independence Ave., SW | Washington, DC 20585 202-586-7550 | f/202-586-1540.
18. Xu, X.R., Li, S.H., Hao, Q., Liu, J. L., Yu, Y. Y., and Li, H.B. (2012). “Activation of persulfate and its environmental application.” J. Environ Bio., 1(1), 60-81.
19. APHA, AWWA, WEF.( 2005) . Standard methods for the examination of water and waste water, 20thEd., Washington, DC, USA.
20. Maleki, A., Khadem Erfan, M.B., Seid Mohammadi, A., and Ebrahimi, R. (2007). “Application of commercial poweded activated carbon for adsorption of carbolic asid in aqueous solution.” Pak. J. Biol. Sci., 10 (14), 2348-2352.
21. Ai, Z., Yang, P., and Lu, X. (2005). “Degradation of 4-chlorophenol by an assisted microwave photocatalysis method.” J. Hazard. Mater., 124(1), 147-152.
22. Sidmohammadi, A., Asgari, G., Ebrahimi, A., Sharifi, Z., and Movahedian H. (2011).“4- Chlorophenol oxidation combined with the application of advanced oxidation technology and the modified microwave in chemical and petrochemical wastewater industry.” J. of Health System Research., 6(3), 390-396. (In Persian)
23. Lin, Y. T., Liang, C., and Chen, J. H .(2011) .“Feasibility study of ultraviolet activated persulfate oxidation of phenol.” J. Chemosphere., 82(8), 1168-1172.
24. Ocampo, A. M. (2009). “Persulfate activation by organic compounds.” Ph. D. Thesis, Washington State University.
25. Berlin, A. A. (1986). “Kinetics of radical-chain decomposition of persulfate in aqueous solutions of organic compounds.” J. Kinet. Catal.(Engl. Transl.)., 27(1), 34-39.
26. Stuerga, D., Gonon, K., and Lallemant, M. (1993).“ Microwave heating as a new way to induce. selectivity between competitive reactions application to isomeric ratio control in sulfonation of naphthalene.” J. Tetrahedron., 49(28), 6229- 6234.
27. Mingos, D. M. P., and Baghurst, D. R. (1991). “Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry.” J. Chem. Soc. Rev., 20(1), 1-47.
28. Baghurst, D. R., and Mingos., D. M. P. (1992). “Superheating effects associated with  microwave dielectric heating.” J. Chem Soc, Chem Commun., 10(9), 674-677.
29. Kappe, C. O. (2004). “Controlled microwave heating in modern organic synthesis.” J. Chemie Angewandte International Edition, 43 (46), 6250-6284.
30. Zhang, W., Yang, S., Niu, R., Shao, X., Shan, L., Yang, X., and Wang, P. (2010). “Microwave- assisted COD removal from landfill leachate by hydrogen peroxide, peroxymonosulfate and persulfate.” (iCBBE), International Conference.Chengdu, IEEE, China, 1-4.
31. Anipsitakis, G. P., and Dionysiou, D. D. ( 2003). “Degradation of chlorinated aromatics with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt.” J. Environmental Science and Technology, 37 (20), 4790-4797.