A Review of Dye Removal Using Polymeric Nanofibers by Electrospinning as Promising Adsorbents

نوع مقاله : مقالات مروری

نویسندگان

1 PhD., Dept. of Chemical and Polymer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

2 Assoc. Prof., Nanotechnology Research Centre, Tehran South Branch, Islamic Azad University, Tehran, Iran

3 Assoc. Prof., Dept. of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran

4 Prof., Dept. of Environmental Research, Institute for Color Science and Technology, Tehran, Iran

چکیده

Water is the most important material that humans and creatures need, and water contamination caused by chemicals such as dyes has brought many problems. Various methods have been used to remove dyes as organic contaminants. Polymeric nanofibers prepared by electrospinning have a nanostructure with a high adsorption capacity for removing water contaminants. To solve this problem, the adsorption process is used, which is very effective for removing water pollutants. The adsorption process is very important in terms of expense and reuse. The use of natural polymers is being promoted as a suitable alternative to synthetic polymers and to reduce environmental pollution. The results indicate that preparing nanofibers by electrospinning and using them as adsorbents is a suitable method to remove contaminants. The effect of operational parameters on the adsorption removal ability of polymeric nanofibers, the optimal adsorption conditions, and the mechanism of dye adsorption have been investigated in detail. The data indicated that polymeric electrospinning nanofibers can be used as environmentally friendly and effective adsorbents for removing water contaminants. Also, the treated dye wastewater is reused in the dyeing process and is not discharged into the environment to conquer the water shortage.

کلیدواژه‌ها


عنوان مقاله [English]

A Review of Dye Removal Using Polymeric Nanofibers by Electrospinning as Promising Adsorbents

نویسندگان [English]

  • Ali Hosseinian Naeini 1
  • Mohammad Reza Kalaee 2
  • Omid Moradi 3
  • Niaz Mohamad Mahmoodi 4
1 PhD., Dept. of Chemical and Polymer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
2 Assoc. Prof., Nanotechnology Research Centre, Tehran South Branch, Islamic Azad University, Tehran, Iran
3 Assoc. Prof., Dept. of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
4 Prof., Dept. of Environmental Research, Institute for Color Science and Technology, Tehran, Iran
چکیده [English]

Water is the most important material that humans and creatures need, and water contamination caused by chemicals such as dyes has brought many problems. Various methods have been used to remove dyes as organic contaminants. Polymeric nanofibers prepared by electrospinning have a nanostructure with a high adsorption capacity for removing water contaminants. To solve this problem, the adsorption process is used, which is very effective for removing water pollutants. The adsorption process is very important in terms of expense and reuse. The use of natural polymers is being promoted as a suitable alternative to synthetic polymers and to reduce environmental pollution. The results indicate that preparing nanofibers by electrospinning and using them as adsorbents is a suitable method to remove contaminants. The effect of operational parameters on the adsorption removal ability of polymeric nanofibers, the optimal adsorption conditions, and the mechanism of dye adsorption have been investigated in detail. The data indicated that polymeric electrospinning nanofibers can be used as environmentally friendly and effective adsorbents for removing water contaminants. Also, the treated dye wastewater is reused in the dyeing process and is not discharged into the environment to conquer the water shortage.

کلیدواژه‌ها [English]

  • Nanofibers
  • Dyes
  • Adsorption
  • Polymer Nanocomposites
  • Electrospinning
Abrigo, M., McArthur, S. L. & Kingshott, P. 2014. Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromolecule Bioscience, 14(6), 772-792.
Agarwal, S., Greiner, A. & Wendorff, J. H. 2009. Electrospinning of manmade and biopolymeric nanofibers- progress in techniques, materials and applications. Advanced Functional Materials, 19(18), 2863-2879.
Akduman, C., Akçakoca Kumbasar, E. P. & Morsunbul, S. 2017. Electrospun nanofiber membranes for adsorption of dye molecules from textile wastewater. IOP Conference Series: Materials Science and Engineering, 254(10), 102001. 
Al-Ahmed, Z. A., Hassan, A. A. & El-Khouly, S. M. 2020. TEMPO-oxidized cellulose nanofibers/TiO2 nanocomposite as new adsorbent for Brilliant Blue dye removal. Polymer Bulletin, 77, 6213-6226.
Alishahi, A. & Aider, M. 2012. Applications of chitosan in the seafood industry and aquaculture: a review. Food and Bioprocess Technology, 5, 817-830.
Almasian, A., Olya, M. E. & Mahmoodi, N. M. 2015. Preparation and adsorption behavior of diethylenetriamine/polyacrylonitrile composite nanofibers for a direct dye removal. Fibers and Polymers, 16, 1925-1934.
Andersen, T., Auk-Emblem, P. & Dornish, M. 2015. 3D cell culture in alginate hydrogels. Microarrays, 4(2), 133-161.
Angammana, C. J. & Jayaram, S. H. 2011. Analysis of the effects of solution conductivity on electrospinning process and fiber morphology. IEEE Transactions on Industry Applications, 47(3), 1109-1117.
Angel, N., Guo, L., Yan, F., Wang, H. & Kong, L. 2020. Effect of processing parameters on the electrospinning of cellulose acetate studied by response surface methodology. Journal of Agriculture and Food Research, 2, 100015.
Anitha, A., Sowmya, S., Kumar, P. T. S., Deepthi, S., Chennazhi, K. P., Ehrlich, H., et al. 2014. Chitin and chitosan in selected biomedical applications. Progress in Polymer Science, 39(9), 1644-1667.
Aravamudhan, A., Ramos, D. M., Nada, A. A. & Kumbar, S. G. 2014. Natural polymers: polysaccharides and their derivatives for biomedical applications. Natural and Synthetic Biomedical Polymers, 67-89.
Asefi, D., Mahmoodi, N. M., & Arami, M. 2010. Effect of nonionic co-surfactants on corrosion inhibition effect of cationic gemini surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 355(1-3), 183-186.
Augst, A. D., Kong, H. J. & Mooney, D. J. 2006. Alginate hydrogels as biomaterials. Macromolecule Bioscience, 6(8), 623-633.
Ayodhya, D. & Veerabhadram, G. 2018. A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection. Materials Today Energy, 9, 83-113.
Azami, M., Bahram, M., Nouri, S. & Naseri, A. 2012. Central composite design for the optimization of removal of the azo dye, methyl orange, from waste water using Fenton reaction. Journal of the Serbian Chemical Society, 77(2), 235-246.
Babu, R. P., O'Connor, K. & Seeram, R. 2013. Current progress on bio-based polymers and their future trends. Progress in Biomaterials, 2, 8.
Bae, H. S., Haider, A., Selim, K. M. K., Kang, D. Y., Kim, E. J. & Kang, I. K. 2013. Fabrication of highly porous PMMA electro-spun fibers and their application in the removal of phenol and iodine. Journal of Polymer Research, 20, 158.
Bagheri, H., Asgari, S. & Piri-Moghadam, H. 2014. On-line micro solid-phase extraction of clodinafop propargyl from water, soil and wheat samples using electrospun polyamide nanofibers. Chromatographia, 77, 723-728.
Baumgarten, P. K. 1971. Electrostatic spinning of acrylic microfibers. Journal of Colloid and Interface Science, 36(1), 71-79.
Bhardwaj, N. & Kundu, S. C. 2010. Electrospinning: a fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325-347.
Braccini, I. & Perez, S. 2001. Molecular basis of Ca2+ induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules, 2(4), 1089-1096.
Cai, J., Zhang, D., Xu, W., Ding, W. P., Zhu, Z. Z., He, J. R., et al. 2020. Polysaccharide-based hydrogels derived from cellulose: the architecture change from nanofibers to hydrogels for a putative dual function in dye wastewater treatment. Journal Agriculture and Food Chemistry, 68(36), 9725-9732.
Campo, V. L., Kawano, D. F., Silva, D. B. & Carvalho, I. 2009. Carrageenans: biological properties, chemical modifications and structural analysis-a review. Carbohydrate Polymers, 77(2), 167-180.
Chan, S. Y. & Choo, W. S. 2013. Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks. Food Chemistry, 141(4), 3752-3758.
Corre, D. L., Bras, J. & Dufresne, A. 2010. Starch nanoparticles: a review. Biomacromolecules, 11(5), 1139-1153.
Crini, G. 2006. Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technology, 97(9), 1061-1085.
Davarpanah, S., Mahmoodi, N. M., Arami, M., Bahrami, H., & Mazaheri, F. 2009. Environmentally friendly surface modification of silk fiber: chitosan grafting and dyeing. Applied Surface Science, 255(7), 4171-4176.
Deitzel, J. M., Kleinmeyer, J., Harris, D. & Beck Tan, N. C. 2001. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42(1), 261-272.
Dos Santos, A. B., Cervantes, F. J. & Van Lier, J. B. 2007. Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresource Technology, 98(12), 2369-2385.
Doshi, J. & Reneker, D. H. 1995. Electrospinning process and applications of electrospun fibers. Journal of Electrostatic, 35(2-3), 151-160.
Einhorn-Stoll, U., Kastner, H. & Drusch, S. 2014. Thermally induced degradation of citrus pectins during storage alterations in molecular structure, colour and thermal analysis. Food Hydrocolloids, 35, 565-575.
Fazaeli, R., Aliyan, H. & Banavandi, R. S. 2015. Sunlight assisted photodecolorization of malachite green catalyzed by MIL-101/graphene oxide composites. Russian Journal of Applied Chemistry, 88, 169-177.
Fong, H., Chun, I. & Reneker, D. H. 1999. Beaded nanofibers formed during electrospinning. Polymer, 40(16), 4585-4592.
Gharanjig, K., Arami, M., Bahrami, H., Movassagh, B., Mahmoodi, N. M. & Rouhani, S. 2008. Synthesis, spectral properties and application of novel monoazo disperse dyes derived from N-ester-1, 8-naphthalimide to polyester. Dyes and Pigments, 76, 684-689.
Gisi, S. D., Lofrano, G., Grassi, M. & Notarnicola. M. 2016. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustainable Materials and Technology, 9, 10-40.
Gunatillake, P., Mayadunne, R. & Adhikari, R. 2006. Recent developments in biodegradable synthetic polymers. Biotechnology Annual Review, 12, 301-347.
Hoogsteen, W., Postema, A. R., Pennings, A. J., Ten Brinke, G. & Zugenmaier, P. 1990. Crystal structure, conformation and morphology of solution-spun poly(L-lactide) fibers. Macromolecules, 23(2), 634-642. 
Huan, S., Liu, G., Han, G., Cheng, W., Fu, Z., Wu, Q., et al. 2015. Effect of experimental parameters on morphological, mechanical and hydrophobic properties of electrospun polystyrene fibers. Materials, 8(5), 2718-2734.
Huang, C. & Thomas, N. L. 2020. Fabrication of porous fibers via electrospinning: strategies and applications. Polymer Reviews, 60(4), 595-647.
Hynninen, V., Mohammadi, P., Wagermaier, W., Hietala, S., Linder, M. B., Ikkala, O., et al. 2019. Methyl cellulose/cellulose nanocrystal nanocomposite fibers with high ductility. European Polymer Journal, 112, 334-345.
Islam, M. S., Ang, B. C., Andriyana, A. & Afifi, A. M. 2019. A review on fabrication of nanofibers via electrospinning and their applications. SN Applied Sciences, 1, 1248.
Jarusuwannapoom, T., Hongrojjanawiwat, W., Jitjaicham, S., Wan-natong, L., Nithitanakul, M., Pattamaprom, C., et al. 2005. Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. European Polymer Journal, 41(3), 409-421.
Jeon, O., Alt, D. S., Ahmed, S. M. & Alsberg, E. 2012. The effect of oxidation on the degradation of photocrosslinkable alginate hydrogels. Biomaterials, 33(13), 3503-3514.
Jeon, O., Powell, C., Ahmed, S. M. & Alsberg, E. 2010. Biodegradable, photocrosslinked alginate hydrogels with independently tailorable physical properties and cell adhesivity. Tissue Engineering Part A, 16(9), 2915-2925.
Jiang, Q., Zhan, C., Zhang, K., Li, Z. & Zhang, R. 2020. Structural design and environmental applications of electrospun nanofibers. Composites Part A: Applied Science and Manufacturing, 137, 106009.
Kaewklin, P., Siripatrawan, U., Suwanagul, A. & Lee, Y. S. 2018. Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit. International Journal of Biological Macromolecules, 112, 523-529.
Kausar, A., Iqbal, M., Javed, A., Aftab, K., Nazli, Z. I. H., Bhatti, H. N., et al. 2018. Dyes adsorption using clay and modified clay: a review. Journal of Molecular Liquids, 256, 395-407.
Kayra, N. & Aytekin, A. Ö. 2019. Synthesis of Cellulose-Based Hydrogels: Preparation, Formation, Mixture, and Modification. In: M. Mondal, (Ed.), Cellulose-Based Superabsorbent Hydrogels, 407-434.
Li, Z. & Wang, C. 2013. Effects of working parameters on electrospinning. One-Dimensional Nanostructures, 15-28.
Liang, R., Chen, J., Liu, W., Liu, C. M., Yuan, W. Y. & Zhou, X. Q. 2012. Extraction characterization and spontaneous gel-forming property of pectin from creeping fig (Ficus pumila Linn.) seeds. Carbohydrate Polymers, 87(1), 76-83.
Licari, J. J. 2004. Coating Materials for Electronic Applications: Polymers, Processes, Reliability, Testing. William Andrew Pub., 1st ed. New York, USA.
Lin, S. H. & Chen, M. L. 1997. Treatment of textile wastewater by-chemical methods for reuse. Water Research, 31(4), 868-876.
Lin, S. K. 2012. Handbook of Polymers. George Wypych, ChemTec Pub., Basel, Switzerland.
Lundin, L. & Hermansson, A. M. 1995. Inflluence of locust bean gum on the rheological behavior and microstructure of k-carrageenan. Carbohydrate Polymers, 28(2), 91-99.
Luzio, A., Canesi, E. V., Bertarelli, C. & Caironi, M. 2014. Electrospun Polymer fibers for electronic application. Materials, 7(2), 906-947.
Mahmoodi, N. M. 2013. Synthesis of amine-functionalized magnetic ferrite nanoparticle and its dye removal ability. Journal of Environmental Engineering, 139, 1382-1390.
Mahmoodi, N. M. 2015. Surface modification of magnetic nanoparticle and dye removal from ternary systems. Journal of Industrial and Engineering Chemistry, 27, 251-259.
Mahmoodi, N. M. & Arami, M. 2008. Modeling and sensitivity analysis of dyes adsorption onto natural adsorbent from colored textile wastewater. Journal of Applied Polymer Science, 109(6), 4043-4048.
Mahmoodi, N. M. & Arami, M. 2009. Numerical finite volume modeling of dye decolorization using immobilized titania nanophotocatalysis. Chemical Engineering Journal, 146(2), 189-193.
Mahmoodi, N. M., Arami, M., Limaee, N. Y., Gharanjig, K. & Ardejani, F. D. 2006. Decolorization and mineralization of textile dyes at solution bulk by heterogeneous nanophotocatalysis using immobilized nanoparticles of titanium dioxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 290(1-3), 125-131.
Mahmoodi, N. M., & Mokhtari-Shourijeh, Z. 2015. Preparation of PVA-chitosan blend nanofiber and its dye removal ability from colored wastewater. Fibers and Polymers, 16, 1861-1869.
Mahmoodi, N. M., & Mokhtari-Shourijeh, Z. 2017. Preparation of polyacrylonitrile - titania electrospun nanofiber and its photocatalytic dye degradation ability. Progress in Color, Colorants and Coatings, 10, 23-30.
Mahmoodi, N. M., Roudaki, M. S. M. A., Didehban, K. & Saeb, M. R. 2019. Ethylenediamine/glutaraldehyde-modified starch: a bioplatform for removal of anionic dyes from wastewater. Korean Journal of Chemical Engineering, 36, 1421-1431.
Maxwell E. G., Belshaw, N. J., Waldron, K. W. & Morris, V. J. 2012. Pectin an emerging new bioactive food polysaccharide. Trends in Food Science and Technology, 24(2), 6473.
Meersman, E., Struyf, N., Kyomugasho, C., Kermani, Z. J., Santiago, J. S., et al. 2017. Characterization and degradation of pectic polysaccharides in Cocoa pulp. Journal of Agricultural and Food Chemistry, 65(44), 9726-9734.
Megelski, S., Stephens, J. S., Bruce Chase, D. & Rabolt, J. F. 2002. Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules, 35(22), 8456–8466.
Mezohegyi, G., van der Zee, F. P., Font, J., Fortuny, A. & Fabregat, A. 2012. Towards advanced aqueous dye removal processes: a short review on the versatile role of activated carbon. Journal of Environmental Management, 102, 148-164.
Mikos, A., Bao, Y., Cima, L., Ingber, D., Vacanti, J. & Langer, R. 1993. Preparation of poly (glycolic acid) bonded fi ber structures for cell attachment and transplantation. Journal of Biomedical Materials Research, 27(2), 183-189.
Mo, J. H., Lee, Y. H., Kim, J., Jeong, J. Y. & Jegal, J. 2008. Treatment of dye aqueous solutions using nanofiltration polyamide composite membranes for the dye wastewater reuse. Dyes and Pigments, 76(2), 429-434.
Mohajershojaei, K., Mahmoodi, N. M., & Khosravi, A. 2015. Immobilization of laccase enzyme onto titania nanoparticle and decolorization of dyes from single and binary systems. Biotechnology and Bioprocess Engineering, 20, 109-116.
Mohnen, D. 2008. Pectin structure and biosynthesis, Current Opinion in Plant Biology, 11(3), 266-277.
Najafi, M. & Frey, M. W. 2020. Electrospun nanofibers for chemical separation. Nanomaterials, 10(5), 982.
Nasrollahi, N., Aber, S., Vatanpour, V. & Mahmoodi, N. M. 2018. The effect of amine functionalization of CuO and ZnO nanoparticles used as additives on the morphology and the permeation properties of polyethersulfone ultrafiltration nanocomposite membranes. Composites Part B: Engineering, 154, 388-409.
Nethaji, S., Sivasamy, A. & Mandal, A. B. 2013. Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass. International Journal of Environmental Science and Technology, 10, 231-242.
Nguyen, T. A. & Juang, R. S. 2013. Treatment of waters and wastewaters con-taining sulfur dyes: a review. Chemical Engineering Journal, 219, 109-117.
O'Connor, R. A., Cahill, P. A. & McGuinness, G. B. 2021. Effect of electrospinning parameters on the mechanical and morphological characteristics of small diameter PCL tissue engineered blood vessel scaffolds having distinct micro and nano fibre populations – A DOE approach. Polymer Testing, 96, 107119.
Oh, S. H. & Lee, J. H. 2013. Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility. Biomedical Materials, 8(1), 014101.
Ortel, G. 1994. Polyurethane Handbook (2nd ed.). Wiley Online Library Pub., Berlin, Germany.
O’Leary, C., Soriano, L., Fagan-Murphy, A., Ivankovic, I., Cavanagh, B., O’Brien, F. J., et al. 2020. The fabrication and in vitro evaluation of retinoic acid-loaded electrospun composite biomaterials for tracheal tissue regeneration. Frontiers in Bioengineering and Biotechnology, 8, 190.
Pan, Y., Wang, Y., Zhou, A., Wang, A., Wu, Z., Lv, L., et al. 2017. Removal of azo dye in an up-flow membrane-less bioelectrochemical system integrated with bio-contact oxidation reactor. Chemical Engineering Journal, 326, 454-461.
Park, J. Y. & Lee, I. H. 2010. Relative humidity effect on the preparation of porous electrospun polystyrene fibers. Journal of Nanoscience and Nanotechnology, 10(5), 3473-3477.
Pelipenko, J., Kristl, J., Jankovic´, B., Baumgartner, S. & Kocbek, P. 2013. The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. International Journal of Pharmaceutics, 456(1), 125–134.
Pillay, V., Dott, C., Choonara, Y. E., Tyagi, C., Tomar, L., Kumar, P., et al. 2013. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. Journal of Nanomaterials, 2013, 789289.
Ranjbar-Mohammadi, M., Arami, M., Bahrami, H., Mazaheri, F. & Mahmoodi, N. M. 2010. Grafting of chitosan as a biopolymer onto wool fabric using anhydride bridge and its antibacterial property. Colloids and Surfaces B: Biointerfaces, 76(2), 397-403.
Rauf, M. A. & Ashraf, S. S. 2012. Survey of recent trends in biochemically assisted degradation of dyes. Chemical Engineering Journal, 209, 520-530.
Ray, S. S., Chen, S. S., Li, C. W., Nguyen, N. C. & Nguyen, H. T. 2016. A comprehensive review: electrospinning technique for fabrication and surface modification of membranes for water treatment application. RSC Advances, 6, 85495-85514.
Rodrigo, M. A. 2021. Fundamental of electrokinetic processes. Environmental Pollution, 30(3), 29-41.
Sande, S. A. 2005. Pectin-based oral drug delivery to the colon. Expert Opinion on Drug Delivery, 2(3), 441-450.
Saratale, R. G., Saratale, G. D., Chang, J. S. & Govindwar, S. P. 2011. Bacterial decolorization and degradation of azo dyes: a review. Journal of the Taiwan Institute of Chemical Engineers, 42, 138-157.
Sarro, M., Gule, N. P., Laurenti, E., Gamberini, R., Paganini, M. C., Mallon, P. E., et al. 2018. Zno-based materials and enzymes hybrid systems as highly efficient catalysts for recalcitrant pollutants abatement. Chemical Engineering Journal, 334, 2530-2538.
Sobieraj, M. C. & Rimnac, C. M. 2009. Ultra high molecular weight polyethylene: mechanics, morphology, and clinical behavior. Journal of the Mechanical Behavior of Biomedical Materials, 2, 433-443.
Sriamornsak, P. 2011. Application of pectin in oral drug delivery. Expert Opinion on Drug Delivery, 8(8), 100923.
Srinivasan, A. & Viraraghavan, T. K. 2010. Decolorization of dye waste-waters by biosorbents: a review. Journal of Environmental Management, 91, 1915-1929.
Sun, B., Long, Y. Z., Zhang, H. D., Li, M. M., Duvail, J. L., Jiang, X. Y., et al. 2014. Advances in three-dimensional nanofibrous macrostructures via electrospinning. Progress in Polymer Science, 39, 862– 890.
Sun, X., Liu, C., Omer, A. M., Lu, W., Zhang, S., Jiang, X., et al. 2019. pH-sensitive ZnO/carboxymethyl cellulose/chitosan bio-nanocomposite beads for colonspecific release of 5-fluorouracil. International Journal of Biological Macromolecules, 128, 468-479.
Sun, Z., Feng, T., Zhou, Z. & Wu, H. 2021. Removal of methylene blue in water by electrospun PAN/β-CD nanofibre membrane. E-Polymers, 21, 398-410. 
Tang, L., Yu, J., Pang, Y., Zeng, G., Deng, Y., Wang, J., et al. 2018. Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chemical Engineering Journal, 336, 160-169.
Tavakoli, O., Goodarzi, V., Saeb, M. R., Mahmoodi, N. M., & Borja, R. 2017. Competitive removal of heavy metal ions from squid oil under isothermal condition by CR11 chelate ion exchanger. Journal of Hazardous Materials, 334, 256-266
Tian, Y., Liu, P., Wang, X., Zhong, G. & Chen, G. 2011. Off-gas analysis and pyrolysis mechanism of activated carbon from bamboo sawdust by chemical activation with KOH. Journal Wuhan University of Technology-Materials Science Edition, 26, 10-14.
Tkaczyk, A., Mitrowska, K. & Posyniak, A. 2020. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review. Science of the Total Environment, 717, 137222.
Turquois, T., Rochas, C. & Taravel, F. R. 1992. Rheological studies of synergistic kappa-carrageenan-carob galactomannan gels. Carbohydrate Polymers, 17, 263-268.
Ullah, H., Wahid, F., Santos, H. A. & Khan, T. 2016. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydrate Polymers, 150, 330-352.
Varjani, S., Rakholiya, P., Ng, H. Y., You, S. & Teixeira, J. A. 2020. Microbial degradation of dyes: an overview. Bioresource Technology, 314, 123728.
Vrieze, S. D, Camp, T. V, Nelvig, A., Hagstrom, B., Westbroek, P. & Clerck, K. D. 2009. The effect of temperature and humidity on electrospinning. Journal of Material Science, 44, 1357-1362.
Wang, S. X., Yap, C. C., He, J., Chen, C., Wong, S. Y. & Li, X. 2016. Electrospinning: a facile technique for fabricating functional nanofibers for environmental applications. Nanotechnology Reviews, 5, 51-73.
Wang, T. & Kumar, S. 2006. Electrospinning of polyacrylonitrile nanofibers. Journal of Applied Polymer Science, 102, 1023-1029.
Wang, X., Niu, H., Wang, X. & Lin, T. 2012. Needleless electrospinning of uniform nanofibers using spiral coil spinnerets. Journal of Nanomaterials, 3, 1-9. 
Wang, Y., Zhu, J., Dong, G., Zhang, Y., Guo, N. & Liu, J. 2015. Sulfonated halloysite nanotubes/polyethersulfone nanocomposite membrane for efficient dye purification. Separation and Purification Technology, 150, 243-251.
Wawrzkiewicz, M., Polska-Adach, E. & Hubicki, Z. 2019. Application of titania based adsorbent for removal of acid, reactive and direct dyes from textile effluents. Adsorption, 25, 621-630.
Wicker, L., Kim, Y., Kim , M. J., Thirkield, B., Lin, Z. & Jung, J. 2014. Pectin as a bioactive polysaccharide extracting tailored function from less. Food Hydrocolloids, 42, 251-259.
Xu, S. Y., Liu , J. P., Huang, X., Du , L. P., Shi, F. L., Dong, R., et al. 2018. Ultrasonic-microwave assisted extraction, characterization and biological activity of pectin from jackfruit peel, LWT - Food Science and Technology, 90, 577-582.
Xu, Y., Zhang, L., Bailina, Y., Ge, Z., Ding, T., Ye, X., et al. 2014. Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel. Journal of Food Engineering, 126, 72-81.
Xue, J., Wu, T., Dai, Y. & Xia, Y. 2019. Electrospinning and electrospun nanofibers: methods, materials and applications. Chemical Reviews, 119(8), 5298-5415.
Yagub, M. T., Sen, T. K., Afroze, S. & Ang, H. M. 2014. Dye and its removal from aqueous solution by adsorption: a review. Advances in Colloid and Interface Science, 209, 172-184.
Yang, S., Lu, Z., Luo, S., Liu, C. & Tang, Y. 2013. Direct electrodeposition of a biocomposite consisting of reduced graphene oxide, chitosan and glucose oxidase on a glassy carbon electrode for direct sensing of glucose. Microchimca Acta, 180, 127-135.
Yannas, I. V. 2004. Classes of Materials Used in Medicine: Natural Materials. In: B. D. Ratner, A. S. Hoffman, F. J. Schoen, & J. Lemons (Eds). Biomaterials Science - An Introduction to Materials in Medicine Classes, 127-136.
Yeul, V. S. & Rayalu, S. S. 2013. Unprecedented chitin and chitosan: a chemical overview. Journal of Polymers and the Environment, 21, 606-614.
Yun, D. W. & Jang, J. 2014. Wear minimization of ultrahigh molecular weight polyethylene by benzophenone-assisted photocrosslinking. Fibers and Polymers, 15, 480-486.
Zeng, G., Ye, Z., He, Y., Yang, X., Ma, J., Shi, H. & Feng. Z. 2017. Application of dopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal from wastewater. Chemical Engineering Journal, 323, 572-583.
Zhang, C., Yuan, X., Wu, L., Han, Y. & Sheng, J. 2005. Study on morphology of electrospun poly (vinyl alcohol) mats. European Polymer Journal, 41(3), 423-432.
Zhang, X., Liu, J., Qian, C., Kan, J. & Jin, C. 2019. Effect of grafting method on the physical property and antioxidant potential of chitosan film functionalized with gallic acid. Food Hydrocolloids, 89, 1-10.
Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B. S. & Chu, B. 2002. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 43, 4403-4412.
Zuo, P. P., Feng, H. F., Xu, Z. Z., Zhang, L. F., Zhang, Y. L., Xia, W., et al. 2013. Fabrication of biocompatible and mechanically reinforced graphene oxide-chitosan nanocomposite films. Chemistry Central Journal, 7, 39.