بهینه‌سازی فرایند پروکسون برای تصفیه پساب کاغذسازی با استفاده از روش Box-Behnken Design

نوع مقاله : مقاله پژوهشی

نویسندگان

استادیار، گروه مهندسی شیمی، دانشگاه تفرش، تفرش، ایران

چکیده

بهبود و تکمیل فرایند تصفیه پساب به‌منظور استفاده مجدد و بازگردانی به خط تولید، اهمیت زیادی دارد. در این پژوهش، فرایند پراکسید هیدروژن/ ازن (پروکسون) به‌عنوان مرحله تکمیلی تصفیه پساب کارخانه کاغذسازی برای کاهش میزان اکسیژن موردنیاز شیمیایی و حذف اشریشیا کلی بررسی شد. در این راستا، از روش طراحی Box-Behnken Design بر پایه روش سطوح پاسخ برای بهینه‌سازی و بررسی اثر سه متغیر حاکم بر فرایند ازن‌زنی شامل حجم مصرفی H2O2، مقدار ازن ورودی (mg/min) O3 و مدت‌زمان ازن‌زنی (min) t، استفاده شد. نتایج نشان داد مقدار O3 و H2O2 بیشترین تأثیر را برای کاهش COD (حداکثر تا حدود 75 درصد) داشته‌اند. همچنین هر سه متغیر بر افزایش کارایی فرایند پروکسون و حتی حذف کامل E. coli نقش به‌سزایی داشته‌اند. در تعیین شرایط بهینه، مقدار O3 معادلmg/min  146، مقدار H2O2 معادل  ml2 و مدت‌زمان ازن‌زنیmin  23 کمترین مقدار COD باقیمانده mg/L 73 و هم‌زمان بیشترین کارایی (حذف 75 درصدی E. coli) پیش‌بینی شد. نتایج نشان داد با توجه به برهم‌کنش O3 و H2O2، فرایند پروکسون ضعیف‌تر از فرایند ازن‌زنی تنها عمل کرده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of the Peroxone Process for Paper Industry Wastewater Treatment Using the Box-Behnken Design Method

نویسندگان [English]

  • Meisam Abdolkarimi Mahabadi
  • Ahmad Bayat
Assist. Prof., Dept. of Chemical Engineering, Tafresh University, Tafresh 39518-79611, Iran
چکیده [English]

It is more important to improve and complete the wastewater process in order to reuse and return it to the production line. In this study, the hydrogen peroxide/ozone process (Peroxone) was investigated as a supplementary step in paper mill wastewater treatment to reduce the amount of chemical oxygen demand and remove E. coli. In this regard, using the Box-Behnken Design method based on the response surface method to optimize and investigate the effect of three variables governing the ozonation process, including the amount of hydrogen peroxide consumed (ml), the amount of ozone input (mg/min) and ozonation time (min) were used. The results showed that the amount of ozone and hydrogen peroxide had the greatest effect for reducing COD (up to about 75%). Also, all three variables have played a significant role in increasing the efficiency of the Peroxone process and even completely eliminating E. coli. In determining the optimal conditions, the amount of ozone (146 mg/min), the amount of hydrogen peroxide (2ml) and the duration of ozonation (23 min), the lowest amount of residual COD (73 mg/L) and the highest efficiency (75% removal of E. coli) are predicted. The results showed that due to the interaction of ozone and hydrogen peroxide, the peroxone process performance was less efficient than the ozonation process alone.

کلیدواژه‌ها [English]

  • Peroxone
  • Wastewater Treatment
  • Experimental Design
  • Paper Industry
Abdolkarimi-Mahabadi, M. & Bayat, A. 2023. Investigating the treatment of paper industry effluent using ozonation process. Journal of Water and Wastewater, 34(4), 123-136. (In Persian). https://doi.org/10.22093/wwj.2023.401406.3363.
Altmann, J., Ruhl, A. S., Zietzschmann, F. & Jekel, M. 2014. Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment. Water Research, 55, 185-193. https://doi.org/10.1016/j.watres.2014.02.025.
Amat, A., Arques, A., Miranda, M. & López, F. 2005. Use of ozone and/or UV in the treatment of effluents from board paper industry. Chemosphere, 60, 1111-1117. https://doi.org/10.1016/j.chemosphere.2004.12.062.
Asad, N. R., Asad, L. M. B. O., Almeida, C. E. B. D., Felzenszwalb, I., Cabral-Neto, J. B. & Leitão, A. C. 2004. Several pathways of hydrogen peroxide action that damage the E. coli genome. Genetics and Molecular Biology, 27, 291-303. https://doi.org/10.1590/S141547572004000200026.
Balabanič, D., Hermosilla, D., Merayo, N., Klemenčič, A. K. & Blanco, A. 2012. Comparison of different wastewater treatments for removal of selected endocrine-disruptors from paper mill wastewaters. Journal of Environmental Science and Health, Part A, 47, 1350-1363. https://doi.org/10.1080/10934529.2012.672301.
Barndõk, H., Hermosilla, D., Cortijo, L., Negro, C. & Blanco, Á. 2012. Assessing the effect of inorganic anions on TiO2-photocatalysis and ozone oxidation treatment efficiencies. Journal of Advanced Oxidation Technologies, 15, 125-132. https://doi.org/10.1515/jaots2012-0114.
Catalkaya, E. C. & Kargi, F. 2007. Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: a comparative study. Journal of Hazardous Materials, 139, 244-253. https://doi.org/10.1016/j.jhazmat.2006.06.023.
Covinich, L. G., Bengoechea, D. I., Fenoglio, R. J. & Area, M. C. 2014. Advanced oxidation processes for wastewater treatment in the pulp and paper industry: a review. American Journal of Environmental Engineering, 4(3), 56-70. https://doi.org/10.5923/j.ajee.20140403.03.
Dawi, E., Padervand, M., Ghasemi, S., Hajiahmadi, S., Kakaei, K., Shahsavari, Z., et al. 2023. Multi-functional fluorinated NiTiO3 perovskites for CO2 photocatalytic reduction, electrocatalytic water splitting, and biomedical waste management. Journal of Water Process Engineering, 54, 103979. https://doi.org/10.1016/j.jwpe.2023.103979.
De Azevedo, A. R., Alexandre, J., Pessanha, L. S. P., Da St Manhães, R., De Brito, J. & Marvila, M. T. 2019. Characterizing the paper industry sludge for environmentally-safe disposal. Waste Management, 95, 43-52. https://doi.org/10.1016/j.wasman.2019.06.001.
Demir, F. & Atguden, A. 2016. Experimental investigation on the microbial inactivation of domestic well drinking water using ozone under different treatment conditions. Ozone: Science and Engineering, 38, 25-35. https://doi.org/10.1080/01919512.2015.1074534.
Deshpande, B., Agrawal, P., Yenkie, M. & Dhoble, S. 2020. Prospective of nanotechnology in degradation of waste water: a new challenges. Nano-Structures and Nano-Objects, 22, 100442. https://doi.org/10.1016/j.nanoso.2020.100442.
Ekblad, M., Falås, P., El-Taliawy, H., Nilsson, F., Bester, K., Hagman, M., et al. 2019. Is dissolved COD a suitable design parameter for ozone oxidation of organic micropollutants in wastewater? Science of The Total Environment, 658, 449-456. https://doi.org/10.1016/j.scitotenv.2018.12.085.
Fischbacher, A., Von Sonntag, J., Von Sonntag, C. & Schmidt, T. C. 2013. The OH radical yield in the H2O2 + O3 (peroxone) reaction. Environmental Science and Technology, 47, 9959-9964. https://doi.org/10.1021/es402305r.
Gogate, P. R. & Pandit, A. B. 2004. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances in Environmental Research, 8, 501-551. https://doi.org/10.1016/S1093-0191(03)00032-7.
Gomes, A. C., Silva, L., Simões, R., Canto, N. & Albuquerque, A. 2013. Toxicity reduction and biodegradability enhancement of cork processing wastewaters by ozonation. Water Science and Technology, 68, 2214-2219. https://doi.org/10.2166/wst.2013.478.
Gupta, G. K., Liu, H. & Shukla, P. 2019. Pulp and paper industry–based pollutants, their health hazards and environmental risks. Current Opinion in Environmental Science and Health, 12, 48-56. https://doi.org/10.1016/j.coesh.2019.09.010.
Gupta, S., Saratchandra, T., Malik, S., Sharma, A., Lokhande, S., Waindeskar, V., et al. 2015. Ozone-Induced biodegradability enhancement and color reduction of a complex pharmaceutical effluent. Ozone: Science and Engineering, 37, 538-545. https://doi.org/10.1080/01919512.2015.1064762.
Han, N., Zhang, J., Hoang, M., Gray, S. & Xie, Z. 2021. A review of process and wastewater reuse in the recycled paper industry. Environmental Technology and Innovation, 24, 101860. https://doi.org/10.1016/j.eti.2021.101860.
He, S., Li, J., Xu, J. & Mo, L. 2016. Enhanced removal of COD and color in paper-making wastewater by ozonation catalyzed by Fe supported on activated carbon. BioResources, 11, 8396-8408.
Hubbe, M. A., Metts, J. R., Hermosilla, D., Blanco, M. A., Yerushalmi, L., Haghighat, F., et al. 2016. Wastewater treatment and reclamation: a review of pulp and paper industry practices and opportunities. BioResources, 11, 7953-8091.
Hübner, U., Zucker, I. & Jekel, M. 2015. Options and limitations of hydrogen peroxide addition to enhance radical formation during ozonation of secondary effluents. Journal of Water Reuse and Desalination, 5, 8-16. https://doi.org/10.2166/wrd.2014.036.
Irshad, M. A., Shakoor, M. B., Nawaz, R., Yasmeen, T., Arif, M. S., Rizwan, M., et al. 2022. Green and eco-friendly synthesis of TiO2 nanoparticles and their application for removal of cadmium from wastewater: Reaction kinetics study. Zeitschrift Für Physikalische Chemie, 236, 637-657. https://doi.org/10.1515/zpch-2021-3171.
Kakaei, K., Padervand, M., Akinay, Y., Dawi, E., Ashames, A., Saleem, L., et al. 2023. A critical mini-review on challenge of gaseous O3 toward removal of viral bioaerosols from indoor air based on collision theory. Environmental Science and Pollution Research, 30, 84918-84932. https://doi.org/10.1007/s11356-023-28402-2.
Karahan, B. N., Akdag, Y., Fakioglu, M., Korkut, S., Guven, H., Ersahin, M. E., et al. 2023. Coupling ozonation with hydrogen peroxide and chemically enhanced primary treatment for advanced treatment of grey water. Journal of Environmental Chemical Engineering, 11, 110116. https://doi.org/10.1016/j.jece.2023.110116.
Karimi, S., Shokri, A., Joshaghani, A. H. & Abdolkarimi-Mahabadi, M. 2022. Using electro-peroxone process for petrochemical wastewater treatment: cost evaluation and statistical analysis. Desalination and Water Treatment, 276, 104-115. https://doi.org/10.5004/dwt.2022.28946.
Kesalkar, V., Khedikar, I. P. & Sudame, A. 2012. Physico-chemical characteristics of wastewater from paper industry. International Journal of Engineering Research and Applications (IJERA), 2, 137-143.
Ko, C. H., Hsieh, P. H., Chang, M. W., Chern, J. M., Chiang, S. M. & Tzeng, C. J. 2009. Kinetics of pulp mill effluent treatment by ozone-based processes. Journal of Hazardous Materials, 168, 875-881. https://doi.org/10.1016/j.jhazmat.2009.02.111.
Kumar, A., Singh, A. K., Bilal, M., Prasad, S., Rameshwari, K. T. & Chandra, R. 2022. Paper and pulp mill wastewater: characterization, microbial-mediated degradation, and challenges. Nanotechnology in Paper and Wood Engineering. Elsevier. https://doi.org/10.1016/B978-0-323-85835-9.00011-8.
Li, X., Fu, L., Chen, F., Zhao, S., Zhu, J. & Yin, C. 2023. Application of heterogeneous catalytic ozonation in wastewater treatment: an overview. Catalysts, 13, 342. https://doi.org/10.3390/catal13020342.
Liu, Y., Jiang, J., Ma, J., Yang, Y., Luo, C., Huangfu, X., et al. 2015. Role of the propagation reactions on the hydroxyl radical formation in ozonation and peroxone (ozone/hydrogen peroxide) processes. Water Research, 68, 750-758. https://doi.org/10.1016/j.watres.2014.10.050.
Malik, S. N., Ghosh, P. C., Vaidya, A. N. & Mudliar, S. N. 2020. Hybrid ozonation process for industrial wastewater treatment: principles and applications: a review. Journal of Water Process Engineering, 35, 101193. https://doi.org/10.1016/j.jwpe.2020.101193.
Mounteer, A., Pereira, R., Morais, A., Ruas, D., Silveira, D., Viana, D. et al. 2007. Advanced oxidation of bleached eucalypt kraft pulp mill effluent. Water Science and Technology, 55, 109-116. https://doi.org/10.2166/wst.2007.218.
Oturan, M. A. & Aaron, J. J. 2014. Advanced oxidation processes in water/wastewater treatment: principles and applications. a review. Critical Reviews in Environmental Science and Technology, 44, 2577-2641. https://doi.org/10.1080/10643389.2013.829765.
Preethi, V., Kalyani, K. P., Iyappan, K., Srinivasakannan, C., Balasubramaniam, N. & Vedaraman, N. 2009. Ozonation of tannery effluent for removal of cod and color. Journal of Hazardous Materials, 166, 150-154. https://doi.org/10.1016/j.jhazmat.2008.11.035.
Rekhate, C. V. & Srivastava, J. 2020. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater-a review. Chemical Engineering Journal Advances, 3, 100031. https://doi.org/10.1016/j.ceja.2020.100031.
Ribeiro, P. H., Faroni, L. R. D. A., Silva, G. J. D., Heleno, F. F., Cecon, P. R., De Alencar, E. R., et al. 2023. Ozonation with hydrogen peroxide for treating wastewater from industrial potato processing-a preliminary investigation. Ozone: Science and Engineering, 1-11. https://doi.org/10.1080/01919512.2023.2196306.
Rodríguez-Chueca, J., Ormad Melero, M. P., Mosteo Abad, R., Esteban Finol, J. & Ovelleiro Narvión, J. L. 2015. Inactivation of Escherichia coli in fresh water with advanced oxidation processes based on the combination of O3, H2O2 and TiO2. Kinetic modeling. Environmental Science and Pollution Research, 22, 10280-10290. https://doi.org/10.1007/s11356-015-4222-3.
Salokannel, A., Heikkinen, J., Kutnpulainen, M., Sillanpää, M. & Turunen, J. 2007. Tertiary treatment of pulp and paper mill wastewaters by ozonation and O3/H2O2 techniques. Paperi Ja Puu, 89, 348-351.
Sevimli, M. F. 2005. Post-treatment of pulp and paper industry wastewater by advanced oxidation processes. Ozone: Science and Engineering, 27, 37-43. https://doi.org/10.1080/01919510590908968.
Shamskilani, M., Niavol, K. P., Nabavi, E., Mehrnia, M. R. & Sharafi, A. H. 2023. Removal of emerging contaminants in a membrane bioreactor coupled with ozonation: optimization by Response Surface Methodology (RSM). Water, Air and Soil Pollution, 234, 304. https://doi.org/10.1007/s11270-023-06319-3.
Shi, Y., Qian, Y., Guo, J., Mao, M. & An, D. 2023. A novel approach for water disinfection by enhanced photoanode oxidation using in-situ generated hydrogen peroxide. Journal of Cleaner Production, 416, 138001. https://doi.org/10.1016/j.jclepro.2023.138001.
Shokri, A., Abdolkarimi-Mahabadi, M. & Soleimani, F. 2022. Degradation of chloridazon in an aqueous environment using TiO2/Ag as a synthesized nano photocatalyst using central composite design. Journal of Nanoanalysis, 9(2), 123-136. https://doi.org/10.22034/jna.2022.1934052.1262.
Shokri, A. & Abdolkarimi, M. 2021. Evaluation of the reaction kinetic in degradation of Acetanilide from pharmaceutical industry effluent by ozonation process. Journal of Applied Research in Chemisry, 14, 96-107. https://dorl.net/dor/20.1001.1.17359937.1399.14.4.9.3.
Takashina, T. A., Leifeld, V., Zelinski, D. W., Mafra, M. R. & Igarashi-Mafra, L. 2018. Application of response surface methodology for coffee effluent treatment by ozone and combined ozone/UV. Ozone: Science and Engineering, 40, 293-304. https://doi.org/10.1080/01919512.2017.1417112.
Tripathy, A., Dixit, P. & Panigrahi, A. 2022. Impact of effluent of Pulp & Paper industry on the flora of river basin at Jaykaypur, Odisha, India and its ecological implications. Environmental Research, 204, 111769. https://doi.org/10.1016/j.envres.2021.111769.
Van Leeuwen, J. 2015. Proposed OS&E requirement: measuring ozone dosage. Ozone: Science and Engineering, 37, 191-192. https://doi.org/10.1080/01919512.2015.1006467.
Wang, H., Zhan, J., Yao, W., Wang, B., Deng, S., Huang, J., et al. 2018. Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O3/H2O2), and an electro-peroxone process. Water Research, 130, 127-138. https://doi.org/10.1016/j.watres.2017.11.054.
Wei, C., Zhang, F., Hu, Y., Feng, C. & Wu, H. 2017. Ozonation in water treatment: the generation, basic properties of ozone and its practical application. Reviews in Chemical Engineering, 33, 49-89. https://doi.org/10.1515/revce-2016-0008.
Wei, S., Xu, H., Li, G., Zhang, Y. & Yang, M. 2023. Coagulation and ozonation treatment of biologically treated wastewater from recycled paper pulping industry: effect on the change of organic compounds. Environmental Science and Pollution Research, 1-13. https://doi.org/10.1007/s11356-023-28803-3.
Yin, G., Liao, P. H. & Lo, K. V. 2007. An ozone/hydrogen peroxide/microwave-enhanced advanced oxidation process for sewage sludge treatment. Journal of Environmental Science and Health, Part A, 42, 1177-1181. https://doi.org/10.1080/10934520701418706.
Zou, J., Liu, Y., Han, Q., Tian, Y., Shen, F., Kang, L., et al. 2023. Importance of Chain length in propagation reaction on oh formation during ozonation of wastewater effluent. Environmental Science and Technology, 57, 18811-18824. https://doi.org/10.1021/acs.est.3c00827.