امکان‌پذیری راه اندازی ‌راکتور بافل‌دار بی‌هوازی (ABR) در تصفیه فاضلاب صنعت نشاسته‌سازی

نوع مقاله : یاداشت‌ فنی

نویسندگان

1 عضو هیئت علمی گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی زنجان

2 دانشیار گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی اصفهان

چکیده

راکتور بافل‌دار بی‌هوازی (ABR) فرآیندی شامل اتاقکهای مجزای بافل‌دار است که برای راهبری نیازی به تشکیل گرانول ندارد، از اینرو، دوره راه‌اندازی آن کوتاه‌ است. در این تحقیق امکان‌پذیری کاربرد فرآیندABR  برای تصفیه فاضلاب صنعت نشاسته‌سازی با آرد گندم مورد بررسی قرار گرفت. فاضلاب نشاسته‌سازی بعد از حذف مواد معلق توسط ته‌نشینی ثقلی ساده به عنوان ورودی استفاده شد. راه‌اندازی راکتور (حجم 13/5 لیتر و پنج اتاقک) با رقیق‌سازی COD ورودی تا 4500 میلی‌گرم بر لیتر در مدت زمان 9 هفته با استفاده از لجن بذردهی حاصل از هاضم بی‌هوازی تصفیه‌خانه فاضلاب انجام شد. راکتور در زمان ماند هیدرولیکی (HRT) برابر با 72 ساعت در °C35 و بارگذاری آلی اولیه kgCOD/m3.d 1/2 ، موفق به حذف COD تا حدود 61 درصد شد. بهترین عملکرد راکتور در بارگذاری آلی kgCOD/m3.d 2/5 و در زمان ماند هیدرولیکی 2/45 روز با 67 درصد تبدیل COD کسب گردید. مزیت اصلی کاربرد ABR ناشی از ساختار اتاقک‌بندی شده آن می‌باشد. اتاقک اول ABR ممکن است به عنوان یک منطقه بافری در برابر مواد سمی و بازدارنده عمل کند و بنابراین اجازه می‌دهد بقیه اتاقکها با مواد به نسبت بی‌ضرر, یکنواخت شده و ورودی اسیدی‌تر بارگذاری شود. به عبارت دیگر, اتاقکهای بعدی برای حمایت جمعیتهای فعال باکتری‌های حساس متان‌ساز مناسب‌تر خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Feasibility of an Anaerobic Baffled Reactor (ABR) In Treating Starch Industry Wastewater

نویسندگان [English]

  • Ali Assadi 1
  • Hossien Movahedyan 2
  • Abdolrahim Parvaresh 2
1 Faculty Member, Department of Environmental Health Engineering, School of Health, Zanjan University of Medical Sciences
2 Assoc. Prof. of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences
چکیده [English]

The anaerobic baffled reactor (ABR) includes a mixed anaerobic culture separated into compartments and a novel process with a series of vertical baffles at each compartment. It dose not require granulation for its operation, resulting in shorter start-up time. In this study, the feasibility of the ABR process was investigated for the treatment of wheat flour starch wastewater. Simple gravity settling was used to remove suspended solids from the starch wastewater and used as feed. Start-up of a reactor (13.5L with five compartments) using a diluted feed of approximately 4500 mg/L chemical oxygen demand (COD) was accomplished in about 9 weeks using seed sludge from the anaerobic digester of a municipal wastewater treatment plant. The reactor with a hydraulic retention time (HRT) of 72 h at 35°C and an initial organic loading rate (OLR) of 1.2 kgCOD/m3.d showed a removal efficiency of 61% COD. The best reactor performance was observed with an organic loading rate of 2.5 kgCOD/m3.d (or hydraulic retention time of 2.45 d) when a COD conversion of 67% was achieved. The main advantage of using an ABR comes from its compartmentalized structure. The first compartment of an ABR may act as a buffer zone to all toxic and inhibitory materials in the feed and, thus, allows the later compartments to be loaded with a relatively harmless, more uniform, and mostly acidified influent. In this respect, the later compartments would be more likely to support active populations of the relatively sensitive methanogenic bacteria.

کلیدواژه‌ها [English]

  • Anaerobic Baffled Reactor (ABR)
  • Starch Wastewater
  • COD removal
  • Organic Loading
1- Langenhoff, A.M., and Stuckey, D. C. (2000). “Treatment of dilute wastewater using an anaerobic baffled reactor: Effect of low temperature.” Water Research, 34 (15), 3867-3875.
2- Rittmann, B .E., and McCarty, P.L. (2001). Environmental biotechnology, 1st Ed., Mc-Graw Hill.
3- Akunna, J .C., and Clark, M. (2000). “Performance of granular-bed anaerobic baffled reactor (GRABBR) treating whisky distillery wastewater.” Bioresource Technology, 74, 257-261.
4- Barber, W.P., and Stuckey, D .C. (1999). “The use of anaerobic baffled reactor (ABR) for wastewater treatment: A review.” Water Research, 33 (7), 1559-1578.
5- Langenhoff, A.M., Intrachandra, N., and Stucky, D. C. (2000). “Treatment of dilute soluble and colloidal wastewater using an anaerobic baffled reactor: Influence of hydraulic retention time.” Water Research, 34 (4), 1307-1317.
6- Nachaiyasit, S., and Stuckey, D.C.(1997). “The effect of shock loads on the performance of an anaerobic baffled reactor (ABR). 2. step and transient hydraulic shocks at constant feed strength.” Water Research,
31 (11), 2747-2754.
7- Nemerow, N. L., and Dasgupta, A. (1991). Industrial and hazardous waste treatment, 2nd Ed., VNR,
New York, 421-422.
8- Annachhatra, A.P., and Amatya, P.L. (2000). “UASB treatment of tapioca starch wastewater.” J. of Environmental Engineering, 126 (12), 1149-1152.
9- Wang, J., Huang, Y., and Zhao, X. (2004). “Performance and characteristics of an anaerobic baffled reactor.” Bioresource Technology, 93, 205-208.
10- Nachaiyasit, S., and Stucky, D.C.(1997). “The effect of shock loads on the performance of an anaerobic baffled reactor (ABR). 1. Step change in feed concentration at constant retention time.” Water Research,
31 (11), 2737-2746.
11- Vossoughi, M., Shakeri, M., and Alemzadeh, I.(2003). “Performance of an anaerobic baffled reactor treating synthetic wastewater influenced by decreasing COD/SO4 ratio.” Chemical Engineering and Processing, 42, 811-816.
12- Uyanic, S., Sallis, P.J., and Anderson, G.K. (2002). “The effect of polymer addition on granulation in an anaerobic baffled reactor (ABR). PART.I: process performance.” Water Research, 36 (4), 933-943.
13- Kuscu, O.S., and Sponza, D.T. (2005). “Performance of anaerobic baffled reactor (ABR) treating synthetic wastewater containing p-nitrophenol.” Enzyme and Microbial Technology, 36, 888-895.
14- Angenent, L.T., Abel, S.J., and Sung, S. (2002). “Effect of an organic shock load on the stability of an anaerobic migrating blanket reactor.” J. of Environmental Engineering, 128 (12), 1109-1120.
15- Wang, B., and Shen, Y. (2000). “Performance of anaerobic baffled reactor (ABR) as a hydrolysis-acidogenesis unit in treating landfill leachate mixed with municipal sewage.” Water Science and Technology, 42(12), 115-121.
16- Barber, W.P., and Stuckey, D .C. (2000). “Metal bioavilability and trivalent chromium removal in ABR.”
J. of Environmental Engineering, 126(7), 649-656.
17- Bell, J., Buckey, C., and Stuckey, D. (2000). “Treatment and decolorization of dyes in an anaerobic baffled reactor.” J. of Environmental Engineering, 126 (11), 1026-1032.
 18- Boopathy, R. (1998). “Biological treatment of swine waste using anaerobic baffled reactor.” Bioresource Technology, 64, 1-6.
19- Saeed Khabaz, M., Vossoughi, M., and Shakeri, M. (2004). “Performance of an anaerobic baffled reactor for olive mill oil wastewater treatment.” Proc. of the 9th Iranian Chemical Engineering Congress,Tehran, CD-ROM.
20- Grover, R., Marwaha, S.S., and Kennedy, J. F. (1999). “Studies on the use of an anaerobic baffled reactor for the continuous anaerobic digestion of pulp and paper mill black liquors.” Process Biochemistry, 39, 653-657.
21- Bodik, I., Kratocvil, K., Gasparkova, E., and Hutnan, M. (2003). “Nitrogen removal in an anaerobic baffled reactor with aerobic post- treatment.” Bioresource Technology, 86, 79-84.
22- APHA, AWWA, WEF. (1995). Standard methods for the examination of water and wastewater, 19th Ed.,New York.
23- Kalyuzhnyi, S., Santos, L., and Martinez, J.R. (1998). “Anaerobic treatment of raw and preclarified potato-maize wastewater in a UASB reactor.” Bioresource Technology, 66, 195-199.
24- Austermann-Haun, U., Seyfried, C.F., and Rosenwinkel, K. (1997). “Full scale experiences with anaerobic pre-treatment of wastewater in the food and beverage industry in Germany.” Water Science and Technology, 36 (2-3), 321-328.