پیش‌بینی فصلی خشکسالی هواشناسی با استفاده از ماشین‌های بردار پشتیبان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکترای هیدرولوژی و منابع آب، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، گروه علوم و مهندسی آب، تهران، ایران

2 دانشیار دانشکده مهندسی عمران، پردیس دانشکده‌های فنی، دانشگاه تهران

3 دانشجوی دکترای مهندسی آب، دانشکده مهندسی عمران، دانشگاه تهران

چکیده

در تحقیقات مختلف، پارامترهای هواشناسی متفاوتی در پیش‌بینی دوره‌های کم بارش مورد توجه قرار گرفته‌اند. در این تحقیق نمایه بارش استاندارد شده (SPI) برای 6 سناریوی فصل (پاییز، زمستان، بهار، پاییز+ زمستان، زمستان+ بهار و پاییز تا بهار) محاسبه شده و متغیرهای هواشناسی پیش‌بینی کننده دمای هوا (در سطح 300، 500، 700 و 850 میلی بار) و ارتفاع ژئوپتانسیل (در سطح 300، 500، 700 و 850 میلی بار) در محدوده طول و عرض جغرافیایی 0 تا 60 درجه شمالی و 0 تا 90 درجه شرقی، در سالهای (1354-1386) برای پیش‌بینی پدیده خشکسالی هواشناسی مورد استفاده قرار گرفت. در این مدل پیش‌بینی، بازه زمانی پیش‌بینی کننده بین ماههای اکتبر تا آوریل برای SPI پیش‌بینی شده در همان بازه زمانی قرار دارد. نمایه بارش استاندارد شده در حوضه‌های مورد مطالعه (حوضه سدهای طالقان و ماملو) بر اساس بارش متوسط حوضه‌ها که به روش میانگین معکوس فاصله وزندار محاسبه شده، تخمین زده شده است. یکی از روشهای یادگیری آماری با استفاده از ناظر به‌نام ماشین‌بردار پشتیبان (SVM) برای تدوین مدل پیش‌بینی SPI استفاده شد. با استفاده از تکنیک آماری مبتنی بر آنتروپی مشترک اطلاعات، نقاط مؤثر بر بارش حوضه سدهای تهران در فصل بهار بیشتر در جنوب، جنوب غربی و شمال غربی کشور و در فصل پائیز، شمال، شمال غربی و جنوب و در زمستان در شمال غربی و غرب کشور تشخیص داده شدند. نتایج مدل SVM در اکثر موارد پیش‌بینی، دقت مناسب داشت. این روش می‌تواند در پیش‌بینی رفتارهای غیرخطی داده‌های هواشناسی با طول دوره آماری کوتاه مورد استفاده قرار گیرد. این دقت برای دسته‌بندی SPI فصلهای پاییز و بهار بیشتر از سایر سناریوها است.

کلیدواژه‌ها


عنوان مقاله [English]

Seasonal Meteorological Drought Prediction Using Support Vector Machine

نویسندگان [English]

  • AliReza Nikbakht Shahbazi 1
  • Banafsheh Zahraie 2
  • Mohsen Nasseri 3
1 Ph.D. of Hydrology and Water Resources, Dept. of Water Sciences and Eng., Sciences and Research Branch, Islamic Azad University, Tehran, Iran
2 Assoc. Prof., of Civil Eng., Tehran University, Tehran
3 Ph.D. Candidate of Water Eng., Dept. of Civil Eng., Tehran University, Tehran
چکیده [English]

In various researches, implementation of meteorological parameters in drought prediction is studied. In the current work, meteorological drought classes based on Standardized Precipitation Index (SPI) for six seasonal scenarios (autumn, winter, spring, autumn + winter, winter +spring, and autumn + winter + spring) and meteorological predictors contained ground and sea surface temperature, weather temperature (at 300, 500, 700 and 850 mi bar) and geopotential height (at 300, 500, 700 and 850 mi bar) wide of North (0, 60) and East (0, 90) was applied in prediction models based on data from 1975 to 2005. In these models, temporal range of meteorological predictors is between October to April month on the same predicted SPI. SPI was calculated based on mean precipitation at seasonal time scale in the main watershed of Tehran (Taleghan, Mamloo) by Inverse Weighted Distance method. The well known statistical supervised machine learning method, support vector machine (SVM), is applied to predict SPI. Regarding to selected data points, the effective regions on Tehran precipitation are southern, southwestern and northwestern of Iran in spring, northern and northwestern in autumn and northwestern and western in winter. SVM depicted accurate results in prediction of SPI, spatially prediction of SPI in all scenarios, and it can be proposed as a very suitable statistical learning method in investigating of nonlinear behavior of meteorological phenomena with a short samples. The predicted SPI in spring and autumn are more accurate than the other scenarios.

کلیدواژه‌ها [English]

  • Climatological Drought
  • Support Vector
  • Standardized Precipitation Index (SPI)
  • Tehran Province
1- Ebrahimi, R., Zahraie, B., and Nasseri, M. (2011). “Mid-term prediction of metorological drought using fuzzy inference system.” J. of Water and Wastewater, 78, 112-125 (In Persian)
2- Nazemossadat, M.J. (1998). “Persian Gulf sea surface tempreture as a drought diagnostic for southern parts of Iran.” J. of Drought News Network, 10, 12-14.
3- Nazemossadat, M.J., and Cordery I., (2000). “On the relationship between ENSO and autumn rainfall in Iran.” International J. of Climatology, 1, 42-67.
4- Karamouz, M., Fallahi, M., Nazif, S., and Rahimi Farahani, M. (2009). “Long lead rainfall prediction using statistical downscaling and artificial neural network modeling.” Scintia Iranica, 16, 165-172.
5- Zahraie, B., and Karamouz, M. (2004). “Seasonal precipitation prediction using large scale climate signals.” Proceedings of EWRI-2004 Conference, Salt lake City, USA.
6- Loukas A., and Vasiliades, L. (2004). “Probabilistic analysis of drought spatiotemporal characteristics in thessaly region.” Greece. Natural Hazards and Earth System Sciences, 4, 719-731.
7- Paulo, A. A., Ferreira, E., Coelho, C., and Pereira, L.S. (2005). “Drought class transition analysis through Markov and loglinear models, an approach to early warning.” Agricultural Water Management, 77, 59-81.
8- Moreira, E.E., Paulo, A.A., Pereira, L.S., and Mexia, J.T. (2006). “Analysis of SPI drought class transitions using loglinear models.” J. Hydrol., 331, 349-359.
9- Zahraie, B., and Roozbahani, A., (2007). “Climate signal clustering using genetic algorithm for precipitation forecasting: A case study of southeast of Iran.” Proceedings of the Word Environmental and Water Resources Congress (ASCE), Tampa, Florida, USA.
10- Vapnik, V. N., and Cortes, C. (1995). “Support vector networks.” Machine Learning, 20, 273-297.
11- Liong, S.-Y., and Sivapragasam, C. (2002). “Flood stage forecasting with support vector machines.” J. of the American Water Resources Association, 38 (1), 173-196.
12- Choy, K.Y., and Chan, C.W. (2003). “Modelling of river discharges and rainfall using radial basis function networks based on support vector regression.” International J. of Systems Science, 34(14-15), 763-773.
13- Yu, X., Liong, S.-Y., and Babovic, V. (2004). “EC-SVM approach for realtime hydrologic forecasting.” J. of Hydroinformatics, 6, 209-223.
14- Bray, M., and Han, D. (2004). “Identification of support vector machines for runoff modeling.” J. of Hydroinformatics, 6 (4), 265-280.
15- Dibike, Y.B., Velickov, S., Solomatine, D., and Abbott, M.B. (2001). “Model induction with support vector machines: Introduction and applications.” J. of Computing in Civil Engineering, 15 (3), 208-216.
16- Tripathi, Sh., Srinivas, V. V., and Nanjundiah, R. S. (2006). “Downscaling of precipitation for climate change scenarios: A support vector machine approach.” J. of Hydrology, 330, 62-640.
17- Wang, W. C., and Men, W. L. (2008). “Online prediction model based on support vector machine.” Neurocomputing, 71, 550-558.
18- Behzad, M., Asghari, K., Eazi, M., and Palhang, M. (2009). “Generalization performance of support vector machines and neural networks runoff modeling.” Expert System with Applications, 36, 7624-7629.
19- Chen, S-T., Yu, P.Sh., and Tang, H. Y. (2010). “Statistical downscaling of daily precipitation using support vector machines and multivariate analysis.” J. of Hydrology, 385, 13-23.
20- Lin, G., Chen, G., Huang, P., and Chou, Y. (2009). “Support vector machine-based models for hourly reservoir inflow forecasting during typhoon-warning periods.” J. of Hydrology, 372, 17-29.
21- Kisi, O., and Cimen, M. (2011). “A wavelet-support vector machine conjunction model for monthly streamflow forecasting.” J. of Hydrology, 399(1-2), 132-140.
22- Nooria, R. A.R., Karbassia, A., Moghaddamniac, D., Hand, M.H., Zokaei-Ashtianie, A., Farokhniab, F., and Ghafari Goushehc, M. (2011). “Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction .” J. of Hydrology, 401 (3-4), 177-189.
23- McKee, T.B., Doesken, N.J., and Kleist, J. (1993). “The relationship of drought frequency and duration to time scales.” In: Proceedings of the Eighth Conference on Applied Climatology. Am. Meteor. Soc., Boston, 179-184.
24- Pai, P.-F., and Hong, W.-C. (2007). “A recurrent support vector regression model in rainfall forecasting,” Hydrological Processes, 21, 819-827.
25- Witten Ian H., and Eibe, F. (2005). Data mining: Practical machine learning tools and techniques, Morgan Kaufmann Pub., Amsterdam.
26- Peng, H.C., Long, F., and Ding, C. (2005). “Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 1226-1232.
27- Chang, C.-C., and Lin, C.-J. (2009). “LIBSVM: A library for support vector machines.” <http://www.csie.ntu.edu.tw/~cjlin/libsvm>.(Version 2.91, November 2009).