جداسازی استون از آب با استفاده از غشای نانوکامپوزیتی پلی ‌دی‌ متیل‌ سیلوکسان/پباکس/تیتانیا به روش تراوش تبخیری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، گروه مهندسی شیمی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

2 دانشیار، گروه مهندسی شیمی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

3 استادیار، گروه مهندسی شیمی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

چکیده

لزوم جداسازی استون از پساب واحدهای صنعتی مانند رنگ‌آمیزی، تولید جوهر، لعاب‌کاری سبب شد روش‌های گوناگونی توسط پژوهشگران پیشنهاد شود. امروزه استفاده از روش تراوش تبخیری به‌دلیل مصرف انرژی کم، سادگی عملیات و سازگاری با محیط‌زیست مورد توجه پژوهشگران قرار گرفته است. در این پژوهش جداسازی استون از آب به‌وسیله غشای نانوکامپوزیتی پلی دی متیل سیلوکسان/پباکس/تیتانیا در دستگاه تراوش تبخیری بررسی شد. برای تعیین خواص مورفولوژی، کریستالوگرافی و برهم‌کنش اجزا سازنده این غشا که به روش ریخته‌گری محلولی ساخته شده است از آزمون‌های میکروسکوپ الکترونی روبشی، طیف‌سنجی انتقال فوریه مادون قرمز و پراش اشعه ایکس، آنالیز گرماسنجی و آزمون زاویه تماس برای تعیین خاصیت آب‌گریزی استفاده شد. براساس روش طراحی آزمایش اثر سه متغیر: درصد وزنی خوراک شامل 4، 8 و12درصد وزنی استون، درصد وزنی نانوذره تیتانیا شامل صفر، 75/0 و 5/19 و دمای عملیاتی شامل 27، 37 و 47 درجه سلسیوس بر مقدار جداسازی استون از آب در دستگاه تراوش تبخیری بررسی شد. نتایج آزمون‌های فیزیکی و شیمیایی روی غشا بیانگر توزیع مناسب نانوذره، تشکیل بافت متراکم و منسجم، تشکیل گروه‌های عاملی مورد انتظار و همچنین افزایش خاصیت آب‌گریزی در غشا را تأیید می‌کند. بررسی طیف‌سنجی انتقال فوریه مادون قرمز وجود هر دو ماده پلی‌دی میتیل سیلوکسان و پباکس به‌همراه نانوذره تیتانیوم را در غشا تأیید می‌کند و آزمایش پراش اشعه ایکس نشان می‌دهد در ساختار غشا دو بخش بلوری و آمورف وجود دارد. نتایج سنجش میکروسکوپ الکترونی، سطح لایه انتخابگر غشا از جنس پباکس را کاملاً یکنواخت، بدون منفذ و فاقد هر نوع نقص و ترک و وجود زیرلایه به‌همراه نانوذره و لایه انتخابگر را در غشا نشان می‌دهد. نتایج این پژوهش نشان داد که با افزایش نانوذره ابتدا درصد جداسازی استون افزایش و سپس به‌دلیل انباشت و عدم‌پراکندگی نانوذره در ماتریس غشا مقدار درصد جداسازی استون کاهش می‌یابد. همچنین بررسی تأثیر غلظت استون در خوراک نشان داد رابطه مستقیمی بین درصد خوراک و درصد جداسازی استون وجود دارد. بررسی اثر دمای خوراک بر مقدار درصد جداسازی استون نشان می‌دهد که با افزایش دما در محدوده 27 تا 37 درجه سلسیوس مقدار درصد جداسازی استون افزایش می‌یابد و بیشتر از این محدوده تا دمای 47 درجه سلسیوس از تأثیر این نقش بر درصد جداسازی استون کاسته می‌شود. نتایج نشان می‌دهد بیشترین درصد جداسازی استون از آب در شرایط غشایی با درصد نانوذره 75/0، دمای خوراک 37 درجه سلسیوس و غلظت خوراک 12 درصد وزنی معادل 11/90 درصد است.

کلیدواژه‌ها


عنوان مقاله [English]

Acetone/Water Separation through Polydimethylsiloxane/PEBAX/Titania Nanocomposite Membrane by Pervaporation Method

نویسندگان [English]

  • Hussein Ghanbari 1
  • Mahmoud Reza Hojjati 2
  • Navid Azizi 3
1 MSc. Graduate Student, Dept. of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
2 Assoc. Prof., Dept. of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
3 Assist. Prof., Dept. of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
چکیده [English]

The need to separate acetone from waste water of industrial units such as dyeing, ink production, glazing, etc. has encouraged researchers to propose various separation methods for this purpose. Among different separation techniques, the pervaporation has been considered as a promising one due to its low energy consumption, operational simplicity and environmental compatibility. In this paper, the removal of acetone from water solution using the prepared polydimethylsiloxane/PEBAX/titania nanocomposite membrane by the pervaporation method has been investigated. After the fabrication of the membranes, they were characterized by various analyses including scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis, and contact angle to study morphology, chemical bonds changes, crystalline structure, thermal resistance, and hydrophobicity feature of the resultant membranes, respectively. Designing the experiments by Taguchi technique, the effect of three variables: feed concentration (4, 8 and 12 wt.%), titania nanoparticles content (0.0, 0.75 and 1.5 wt.%), and operating temperature (27, 37 and 47 °C) on the separation efficiency of acetone from water was surveyed. The characterization membranes’ results are indicative of a proper distribution of the nanoparticles in the membranes matrices, dense structure of the membranes, the existence of expected functional groups in the membranes, as well as the increased hydrophobicity of the membranes. The FTIR outcomes confirm the presence of PEBAX, polydimethylsiloxane, along with the titania nanoparticles in the fabricated membranes. Besides, the semi-crystalline structure of the membranes which is affirmed by the XRD analysis exhibits the existed crystalline and amorphous parts in their bodies. The SEM photos displays PEBAX-based selective layer with its defect free and dense structure, along with the polydimethylsiloxane-based support layer containing the titania nanoparticles. The obtained results of this study indicated that with raising the titania nanoparticles loading, the separation efficiency of acetone from the water solution firstly increased due to the improved hydrophobicity of the membranes resulting from the well-dispersed titania nanoparticles and then decreased because of the aggregated nanofillers. Moreover, the results exhibited that there is a direct relation between the acetone concentration in feed and the acetone separation efficiency. It was also shown that the as the operating temperature is enhanced from 27 to 37 °C, the separation efficiency increases remarkably, while it does not change significantly at the temperature more than 37 °C. The pervaporation experiments revealed the maximum acetone/water separation efficiency of 90.11% for the membrane embedded with 0.75 wt. % of the titania nanoparticles at 37 °C and 12 wt. % of feed concentration.

کلیدواژه‌ها [English]

  • Polydimethylsiloxane
  • PEBAX
  • Titania Nanoparticles
  • Acetone
  • Pervaporation
Berenjian, A., Chan, N., & Malmiri, H. J. 2012. Volatile organic compounds removal methods: a review. American Journal of Biochemistry and Biotechnology, 8, 220-229.
Durmaz Hilmioglu, N. & Ugur Nigiz, F. 2017. Removal of acetone from wastewater by POSS loaded PDMS membrane. Periodica Polytechnica Chemical Engineering, 61(3), 163-170.
Griffiths, P. R. & Haseth, J. A. D. 2007. Fourier transform infrared spectrometry. A John Wiley & Sons. Inc., Pub., USA.
Khan, F. I. & Kr. Ghoshal, A. 2000. Removal of volatile organic compounds from polluted air. Journal of Loss Prevention in the Process Industries, 13, 527-545.
Kim, H. J., Nah, S. S. & Min, B. R. 2002. A new technique for preparation of PDMS pervaporation membrane for VOC removal. Advances in Environmental Research, 6, 255-264.
Kujawa, J., Cerneaux, S. & Kujawski, W. 2015. Removal of hazardous volatile organic compounds from water by vacuum pervaporation with hydrophobic ceramic membranes. Journal of Membrane Science, 474, 11-19.
Murali, R. S., Sridhar, S., Sankarshana, T. & Ravikumar, Y. V. L. 2010. Gas permeation behavior of pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes. Industrial and Engineering Chemistry Research, 49, 6530-6538.
Sahin, M. O. & Sanli, O. 2021. In situ synthesis of ZnO nanoparticles in poly(vinyl alcohol) membranes and its use in separation of acetone/water mixtures via pervaporation. Journal of Molecular Structure, 1225, 129285.
Pavia, D. L., Lampman, G. M. & Kriz, G. S. 1996. Introduction to Spectroscopy: A guide for students of organic chemistry. Harcourt Brace College Publishers, California, USA.
Peng, M., Vane, L. M. & Liu, S. X. 2003. Recent advances in VOCs removal from water by pervaporation. Journal of Hazardous Materials, 98, 69-90.
Rabiee, H., Soltanieh, M., Mousavi, S. A. & Ghadimi, A. 2014. Improvement in CO2/H2 separation by fabrication of poly(ether-b-amide6)/glycerol triacetate gel membranes. Journal of Membrane Science, 469, 43-58.
Srividhya, M. & Reddy, B. 2007. Structure–gas transport property relationships of hexafluoroisopropylidene based poly (imide-siloxane)s. Journal of Membrane Science, 296, 65-76.
Sun, Y. & Liu, W. 2011. Synthesis and properties of triblock copolymers containing PDMS via AGET ATRP. Polymer Bulletin, 68, 1815-1829.
Surya Murali, R., Ismail, A. F., Rahman, M. A. & Sridhar, S. 2014a. Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations. Separation and Purification Technology, 129, 1-8.
Surya Murali, R., Praveen Kumar, K., Ismail, A. F. & Sridhar, S. 2014b. Nanosilica and H-mordenite incorporated poly (ether-block-amide)-1657 membranes for gaseous separations. Microporous and Mesoporous Materials, 197, 291-298.
Shin, C., Baer, Z. C., Chen, X. C., Ozcam, A. E., Clark, D. S. & Balsara, N. P. 2015, Block copolymer pervaporation membrane for in situ product removal during acetone–butanol–ethanol fermentation. Journal of Membrane Science, 484, 57-63.
Tsujita, Y., Yoshimura, K., Yoshimizu, H., Takizawa, A., Kinoshita, T., Furukawa, M., et al. 1993. Structure and gas permeability of siloxane-imide block copolymer membranes: 1. effect of siloxane content. Polymer, 34, 2597-2601.
Yeang, Q. W., Zein, S. H. S., Sulong, A. B. & Tan, S. H. 2013. Comparison of the pervaporation performance of various types of carbon nanotube-based nanocomposites in the dehydration of acetone. Separation and Purification Technology, 107, 252-263.
Zhang, Q. Z., Li, B. B., Li, P. X., Li, D. Y., Yang, P. & Sun, D. 2016. Pervaporation of acetone/water mixture by PDMS-PTFE/PVDF composite membrane. Desalination and Water Treatment, 57, 23489-23504.
Zadmard, R. Kazemi, A. & Abbasszadeh, P. 2013. Modification of TiO2 nanoparticles with 5,7,11,23-tetra-tert-butylcalix[4] arene and its application for gas separation properties of mixed matrix membranes (MMM) for gas sweetening. Journal of Applied Research in Chemistry (JARC), 7(3), 49-57. (In Persian)
Zhang, Y., Benes, N. E. & Lammertink, R. G. 2016. Performance study of pervaporation in a microfluidic system for the removal of acetone from water. Chemical Engineering Journal, 284, 1342–1347.