Comparison of Heuristic Methods Applied for Optimal Operation of Water Resources

Document Type : Research Paper


1 Assoc. Prof. of Water Resources Management, Dept. of Civil Engineering, Khajeh-Nasir Toosi University of Technology, Tehran

2 Instructor, of Water Resources Management, Dept. of Civil Engineering, Khajeh-Nasir Toosi University of Technology, Tehran


Water resources optimization problems are usually complex and hard to solve using the ordinary optimization methods, or they are at least  not economically efficient. A great number of studies have been conducted in quest of suitable methods capable of handling such problems. In recent years, some new heuristic methods such as genetic and ant algorithms have been introduced in systems engineering. Preliminary applications of these methods in water resources problems have shown that some of them are powerful tools, capable of solving complex problems. In this paper, the application of such heuristic methods as Genetic Algorithm (GA) and Ant Colony Optimization (ACO) have been studied for optimizing reservoir operation. The Dez Dam reservoir inIranwas chosen for a case study. The methods were applied and compared using short-term (one year) and long-term models. Comparison of the results showed that GA outperforms both DP and ACO in finding true global optimum solutions and operating rules.


1- Dorigo, M., Maniezzo, V., and Colorni, A. (1996). “The Ant system: optimization by a colony of cooperating agents.” IEEE Trans. Sys. Mancybern., 26 (1), 29-42.
2- Gen, M., and Cheng, R. (1997). Genetic algorithms and engineering design, 1st Ed., John Wiley and Sons, Inc.,New York.
3- Esat,V., and Hall, M. J. (1994). “Water resources system optimisation using genetic algorithms.” Mydroinformatics, 94, 225-231.
4- Oliveria, R., and Loucks, D. P. (1997). “Operating rules for multireservoir systems.” Water Resource Res.,33(4), 839-852.
5- Wardlaw, R., and Sharif, M. (1999). “Evaluation of genetic algorithms for optimal reservior system operation.J. of Water Res. Plan. and Manag., ASCE, 125(1), 25-33.
6- Sharif, M., and Wardlaw, R. (2000). “Multireservoir systems optimization using genetic algorithms: case study.” J. of Computing in Civil Engineering, 14(4), 255-263.
7- Chen, L. (2003). “Real coded genetic algorithm optimization of long term reservoir operation.” J. of AWRA, 39(5), 1157-1165.
8- ممتحن، ش.، و برهانی داریان، ع. (1384) کاربرد مقایسه‌ای الگوریتم ژنتیک در بهینه‌سازی بهره‌برداری از سیستم‌های چند مخزنی. مجله آب و فاضلاب، 56، 11-20.
9- Momtahen, Sh., and Dariane, A. B. (2007). “Direct search approach using genetic algorithm for optimization of water reservoir operating policies.” ASCE, J. of Water Res. Plan. and Manag., 113(3), 202-209.
10- Dariane, A. B., and Momtahen, Sh. (2006). “Direct search method using genetic algorithms for optimization of multi-reservoir systems operation.” J. of Water Res. Plan. and Manag., (in press).
11- Abbaspour, K., Schulin, R., and Van Genuchten, M. Th. (2001). “Estimating  unsaturated soil hydraulic parameters using ant colony optimization.” Advances in Water Resources, 24 (8), 827-841.
12- Maier, H., Simpson, A. R., Cozecchin, A., Foong, W., Phang, K., Seah, H., and Tan, C. (2003). “Ant colony optimization for design of water distribution systems.” J. of Water Res. Plan. and Manag., ASCE, 129(3), 200-209.
13- Jalali, M. R., Afshar, A., and Marino, M. A. (2006). “Reservoir operation by ant colony optimization algorithms.Iranian J. of Science and Technology, (IJST), (in press).
14- مرتضوی نائینی، س. م.، و دهقانی، ا. ا. (1384). بهینه‌سازی هوشمند مقاطع سدهای وزنی بتنی روی پی‌های سنگی با استفاده از الگوریتم بهینه‌سازی جامعه مورچگان. پنجمین کنفرانس هیدرولیک، کرمان.
15- مرتضوی نائینی، س. م.، و برهانی داریان، ع. (1385). بررسی مقایسه‌ای روشهای الگوریتم مورچگان و ژنتیک در کالیبراسیون مدل تانک. هفتمین کنگره بین‌المللی مهندسی عمران، تهران.
16- افتخار جوادی، ا. (1382). نقش پیش‌بینی جریان ورودی در بهره‌برداری بهینه از مخازن. پایان‌نامه کارشناسی ارشد، دانشکده مهندسی عمران، دانشگاه صنعتی خواجه نصیر طوسی، تهران.
17- مرتضوی نائینی، س. م. (1384). کاربرد روشهای جدید استوکاستیک-کاوشی در بهره‌برداری بهینه از منابع آب.پایان‌نامه کارشناسی ارشد، دانشکده عمران، دانشگاه صنعتی خواجه نصیر طوسی، تهران.
18- Dorigo, M., and Gambardella, L. M. (1997). “Ant colony system: A cooperative learning approach to the traveling salesman problem.IEEE Trans. Evolut. Comput., 1(1), 53-66.