Estimation of Hydraulic Pressure in Water Networks Using Artificial Neural Networks and Fuzzy Logic

Document Type : Research Paper


1 Professor, School of Civil and Environmental Engineering, Amirkabir University,

2 Assistant Professor, and Ph.D Student, respectively, Department of Civil Engineering, Faculty of Engineering, University of Tehran

3 Ph.D. Student, Department of Civil Engineering, Faculty of Engineering, Amir Kabir University


Hydraulic pressure is one of the most significant parameters in optimizing water distribution networks. Its simulation and estimation are essential tools in water distribution network management due to the significant effects it has on certain parameters of these networks. As a result of water losses to leakage, not all the inflow to urban water networks is consumed. Water leakage results in losses of supply, pressure, and capital investment. It also has adverse effects on water transfer capability, water treatment, and other elements in the distribution process. Furthermore, water quality problems could result from pollution at leak points. It is, therefore, necessary to estimate the amount of leakage at each point as a function of pressure. In this paper, artificial neural network as a powerful and flexible mathematical tool is used to model pressure estimation based on reservoir head, node elevation, water consumption, and the amount of leakage at a given point. Part of Tehran metropolitan water distribution system is modeled and the EPANET2.0 software is used to estimate the pressure variations in the network. Two different artificial neural network models, namely, a multi-layered ANN and a fuzzy logic neural network (ANFIS) are used for this purpose. The results are analyzed and compared with those from EPANET.


1-Tabesh, M. Zia, A. (2003). "Dynamic Management of Water Distribution System Networks Based on Hydraulic Performance Analysis of System. "Water Science and Technology, 3 (1-2), 5-102.
2- تائبی، ا. (1378). " ارتباط بین فشار و میزان نشت در شبکه توزیع آب." دومین کنفرانس هیدرولیک ایران،255-252.
3- Lambert, A.O., McKenzie, R.D. (2002). "Practical Experience in Using The Infrastructure Index." International Water Data Comparisions Ltd, UK, Global water resources Ltd, Republic of south Africa.
4- اسدیانی یکتا، ا.ح. (1383). " تهیه بسته نرم‌افزاری محاسبه آب به حساب نیامده با استفاده از مدل تحلیل هیدرولیکی و GIS." پایان‌نامه کارشناسی‌ارشد، دانشکده فنی دانشگاه تهران.
5- Araujo, L.S., Coelho, S.T., and Ramos, H.M. (2003). "Estimation of Distributed Pressure-Dependent Leakage and Consumer Demand in Water Supply Networks." advances in water supply management- maksimovic, Butler & Memon (eds), Swets & Zeitlinger, Lisses, ISBN 9058096084.
6- Burrows, R., Mulried, G. and Hayuti, M. (2003). "Introduction of a Fully Dynamic Representation of leakage into Network Modeling Studies EPANET." advances in water supply management- maksimovic, Butler & Memon, eds., Swets & Zeitlinger, Lisses, ISBN 9058096084.
7- تابش، م.، گوشه، س.، یزدان‌پناه، م.ج. (1383). " تخمین تقاضای کوتاه مدت آب شهری با استفاده از شبکه‌های عصبی مصنوعی." چهارمین کنفرانس هیدرولیک ایران، شیراز، 998-991.
8-Damas, M.; Salmeron, M.; Ortega, J. (2000). "ANNs and GAs for Predictive Controlling of Water Supply Networks", Proceedings of the International Joint Conference on Neural Networks, 365-370.
9- Geem, Z.W. (2003). "Window-Based Decision Support System for the Water Pipe Condition Assessment using Artificial Neural Network." World Water and Environmental Resources Congress, 2027-2032.
10- Gibbs, M.S., Morgan, N., Maier, H.R., Dandy, G.C., Holmes, M., and J.B. Nixon. (2002). "Use of Artificial Neural Networks for Modelling Chlorine Residuals in Water Distribution Systems".
11-Mounce, S.R.; Day, A.J.; Wood, A.S.; Khan, A.; Widdop, P.D.; Machell, J. (2002). "A neural network approach to burst detection." Water Science and Technology, 45 (4-5), 237-246.
12- کارآموز، م.، طبری، م.ر.، کراچیان، ر. (1382). "بهره‌برداری تلفیقی از منابع آب سطحی و زیرزمینی در جنوب تهران: کاربرد مدلهای الگوریتم ژنتیک و شبکه‌های عصبی مصنوعی." اولین کنفرانس سالانه مدیریت منابع آب ایران، تهران.
13- Karamouz, M., M.Tabari, M.R., Karachian, R. (2004). "Conjunctive use of surface and ground water resources: Application of genetic algorithms and neural networks." Conference on Critical transition in water and environmental resource management, Salt Lake city.
14- Karamouz, M., Razavi, S., Araghinejad, SH. (2004). "Application of artificial neural networks in flood estimation." Proceeding of 4th international conference on decision making in urban & civil engineering, Porto, Portugal.
15- یراقی، پ.، تابش، م. (1380). " آنالیز پویای آب به حساب نیامده در شبکه‌های توزیع آب شهری"، سومین کنفرانس هیدرولیک ایران، 493-500.
16- تابش، م.، بستانیان، م.ب.، دلاور، م.ر. (1383). "  کاربرد مدل تلفیقی GIS و تحلیل هیدرولیکی در محاسبه نشت شبکه‌های توزیع آب شهری." مجله بین‌المللی علوم مهندسی، دانشگاه علم و صنعت ایران، ج 15، شماره 2، 133-145.
17- کارآموز، م.،کراچیان، ر. (1382). "برنامه‌ریزی و مدیریت کیفی سیستم‌های منابع آب." انتشارات دانشگاه صنعتی امیرکبیر.
18- راهنمای نرم‌افزار MATLAB7.0
19- McKensie, R.D. (1999). "SANFLOW, User Guide." south Africa water research commission, WRC report TT 109/99.