حذف کروم سه و شش ظرفیتی از محیط‌های آبی با استفاده از لئوناردیت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

2 دانش‌آموخته کارشناسی ارشد گروه زمین‌شناسی، دانشکده علوم، دانشگاه ارومیه، ارومیه، ایران

3 دانشیار، گروه زمین‌شناسی، دانشکده علوم، دانشگاه ارومیه، ارومیه، ایران

4 استاد، گروه شیمی، دانشکده علوم، دانشگاه ارومیه، ارومیه، ایران

چکیده

حضور کروم در آب آشامیدنی و ورود پساب صنایع به منابع آب‌های زیرزمینی، سلامت بشر و محیط زیست را به خطر می‌اندازد. این پژوهش به‌منظور بررسی تأثیر لئوناردیت در حذف آلایندهای Cr+6، Cr+3 از محیط‌های آبی انجام شد. مقادیر بهینه فاکتورها به روش مدل سطح پاسخ و طرح مرکب مرکزی تعیین شد. داده‌های جذب با معادلات سینتیکی شبه مرتبه اول و دوم برازش داده شدند. همچنین اثرات کاتیون‌ها و آنیون‌های تداخل کننده در جذب کروم تعیین شد. نتایج نشان داد که فاکتور زمان تماس، مقدار لئوناردیت و pH بیشترین تأثیر را در حذف کروم دارند. داده‌های سینتیکی کروم نسبت به معادله شبه مرتبه دوم (995/0=R2) به‌خوبی برازش داده شد. مقادیر پارامترهای ظرفیت (qe) و ضریب جذبی (Kads) Cr3+نسبت به Cr6+ بیشتر بود. به‌طوری که Cr3+ در فاصله زمانی کوتاه به‌ مقدار زیاد توسط جاذب جذب شد. همچنین Fe (III) به‌عنوان کاتیون و SO42- به‌عنوان آنیون تداخل کننده، باعث کاهش حذف کروم Cr3+ و Cr6+ توسط لئوناردیت شدند. استنباط می‌شود که لئوناردیت به‌عنوان جاذب زیست‌تخریب‌پذیر، برای حذف کروم مناسب است و می‌توان از آن در حذف کروم‌ از آب‌های آلوده استفاده نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Removal of Chromium (Cr3+) and (Cr6+) from Aqueous Solutions Using Leonardite

نویسندگان [English]

  • Behnam Dovlati 1
  • Ehsan Naderi 2
  • Hosein Pirkharrati Pirkharrati 3
  • Khalil Farhadi 4
1 Assist. Prof., Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Former Graduate Student, Department of Geology, Urmia University, Urmia, Iran
3 Assoc. Prof., Department of Geology, Urmia University, Urmia, Iran
4 Prof., Department of Chemistry, Faculty of Sciences, Urmia University, Urmia, Iran
چکیده [English]

The presence of chromium in drinking water and the entry of industrial wastewater into groundwater resources endangers human health and the environment. This study was done to investigate the effect of leonardite to remove Cr+6, Cr+3 from aqueous environments. The optimal values of factors were determined by the surface response model and the central composite design. Adsorption data were fitted with the pseudo-first order and pseudo-second order kinetic models. In addition, the effects of interfering cations and anions on chromium adsorption were determined. The results showed that the contact time, amount of leonardite and pH significantly affect chromium sorption. Chromium kinetic data were well fitted (R2=0.995) to the pseudo second order equation. The capacity (qe) and adsorption coefficient (Kads) parameters for Cr3+ were higher than Cr6+. As a large amount of Cr3+ was adsorbed by leonardite in a short time. Fe3+ and SO42- as interfering ions reduced the removal of Cr3+ and Cr6+ by leonardite respectively. It is concluded that Leonardite, as a biodegradable adsorbent, is suitable for remove of chromium from contaminated waters.

کلیدواژه‌ها [English]

  • Leonardite
  • Chromium
  • Kinetics
  • Ion Interfering’s

Agarwal, G., Bhuptawat, H. K. & Chaudhari, S. 2006. Biosorption of aqueous chromium (VI) by Tamarindus indica seeds. Bioresource Technology, 97, 949-956.

Ahalya, N., Ramachandra, T. & Kanamadi, R. 2003. Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7, 71-79.

Attia, A., Khedr, S. & Elkholy, S. 2010. Adsorption of chromium ion (VI) by acid activated carbon. Brazilian Journal of Chemical Engineering, 27, 183-193.

Esfahani, A. R., Hojati, S., Azimi, A., Alidokht, L., Khataee, A. & Farzadian, M. 2014. Reductive removal of hexavalent chromium from aqueous solution using sepiolite-stabilized zero-valent iron nanoparticles: Process optimization and kinetic studies. Korean Journal of Chemical Engineering, 31, 630-638.

Fabbricino, M., Naviglio, B., Tortora, G. & D'antonio, L. 2013. An environmental friendly cycle for Cr (III) removal and recovery from tannery wastewater. Journal of Environmental Management, 117, 1-6.

Gröhlich, A., Langer, M., Mitrakas, M., Zouboulis, A., Katsoyiannis, I. & Ernst, M. 2017. Effect of organic matter on Cr (VI) removal from groundwater by Fe (II) reductive precipitation for groundwater treatment. Water, 9 (6), Article No. 389.

Guo, Y., Qi, J., Yang, S., Yu, K., Wang, Z. & Xu, H. 2003. Adsorption of Cr (VI) on micro-and mesoporous rice husk-based active carbon. Materials Chemistry and Physics, 78, 132-137.

Jagtap, S., Yenkie, M. K., Das, S. & Rayalu, S. 2011. Synthesis and characterization of lanthanum impregnated chitosan flakes for fluoride removal in water. Desalination, 273, 267-275.

Kaprara, E., Kazakis, N., Simeonidis, K., Coles, S., Zouboulis, A., Samaras, P., et al. 2015. Occurrence of Cr (VI) in drinking water of Greece and relation to the geological background. Journal of Hazardous Materials, 281, 2-11.

Kaur, R., Singh, J., Khare, R., Cameotra, S. S. & Ali, A. 2013. Batch sorption dynamics, kinetics and equilibrium studies of Cr (VI), Ni (II) and Cu (II) from aqueous phase using agricultural residues. Applied Water Science, 3, 207-218.

Lapedes, D. N. 1974. McGraw-Hill encyclopedia of environmental science, McGraw-Hill Companies.

Leyva‐Ramos, R., Fuentes‐Rubio, L., Guerrero‐Coronado, R. M. & Mendoza‐Barron, J. 1995. Adsorption of trivalent chromium from aqueous solutions onto activated carbon. Journal of Chemical Technology and Biotechnology, 62, 64-67.

Machovic, V., Mizera, J., Sykorova, I. & Borecká, L. 2000. Ion-exchange properties of Czech oxidized coals. Acta Montana, 117, 15-26.

Meena, A. H. & Arai, Y. 2016. Effects of common groundwater ions on chromate removal by magnetite: Importance of chromate adsorption. Geochemical Transactions, 17, 1.

Meenakshi, S., Sundaram, C. S. & Sukumar, R. 2008. Enhanced fluoride sorption by mechanochemically activated kaolinites. Journal of Hazardous Materials, 153, 164-172.

Mohan, D. & Pittman Jr, C. U. 2006. Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. Journal of Hazardous Materials, 137, 762-811.

Mousavi, S. M., Niaei, A., Salari, D., Panahi, P. N. & Samandari, M. 2013. Modelling and optimization of Mn/activate carbon nanocatalysts for NO reduction: Comparison of RSM and ANN techniques. Environmental Technology, 34, 1377-1384.

Palmer, C. D. & Puls, R. W. 1994. Natural attenuation of hexavalent chromium in groundwater and soils. Chapter, 4, 57-72.

Park, D.-H., Yun, Y.-S., Lim, S.-R. & Park, J.-M. 2006. Kinetic analysis and mathematical modeling of Cr (VI) removal in a differential reactor packed with ecklonia biomass. Journal of Microbiology and Biotechnology, 16, 1720-1727.

Rengaraj, S., Moon, S.-H., Sivabalan, R., Arabindoo, B. & Murugesan, V. 2002. Agricultural solid waste for the removal of organics: Adsorption of phenol from water and wastewater by palm seed coat activated carbon. Waste Management, 22, 543-548.

Şahin, Y. & Öztürk, A. 2005. Biosorption of chromium (VI) ions from aqueous solution by the bacterium Bacillus thuringiensis. Process Biochemistry, 40, 1895-1901.

Solé, M., Casas, J. M. & Lao, C. 2003. Removal of Zn from aqueous solutions by low-rank coal. Water, Air, and Soil Pollution, 144, 57-65.

Sounthararajah, D. P., Loganathan, P., Kandasamy, J. & Vigneswaran, S. 2015. Effects of humic acid and suspended solids on the removal of heavy metals from water by adsorption onto granular activated carbon. International Journal of Environmental Research and Public Health, 12, 10475-10489.

Talokar, A. 2011. Studies on removal of chromium from waste water by adsorption using low cost agricultural biomass as adsorbents. International Journal of Advanced Biotechnology and Research, 2, 452-456.

Vaghetti, J. C., Lima, E. C., Royer, B., Brasil, J. L., Da Cunha, B. M., Simon, N. M., et al. 2008. Application of Brazilian-pine fruit coat as a biosorbent to removal of Cr (VI) from aqueous solution—Kinetics and equilibrium study. Biochemical Engineering Journal, 42, 67-76.