کارایی پوسته غلاف گیاه آکاسیاتورتیلیس به‌عنوان جاذب ارزان قیمت و قابل دسترس در حذف فنل

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیئت علمی دانشکده بهداشت، مرکز تحقیقات ارتقاء سلامت، دانشگاه علوم پزشکی زاهدان و عضو باشگاه پژوهشگران جوان و نخبگان، دانشگاه آزاد اسلامی، واحد همدان، همدان، ایران

2 استادیار گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی تهران

3 دانشیار گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی ایران، تهران

4 استاد مرکز تحقیقات مهندسی بهداشت محیط و گروه بهداشت محیط، دانشگاه علوم پزشکی کرمان، کرمان، ایران

چکیده

امروزه وجود ترکیبات مقاوم سمی از جمله فنل در محیط زیست مشکلات بهداشتی و محیط ‌زیستی فراوانی ایجاد کرده‌اند. در این پژوهش کارایی پوسته غلاف گیاه آکاسیاتورتیلیس به‌عنوان جاذب ارزان قیمت و قابل دسترس در حذف فنل بررسی شد. این پژوهش تجربی در مقیاس آزمایشگاهی در یک سیستم ناپیوسته انجام پذیرفت. در این راستا اثر متغیرهای مهم بهره‌برداری از قبیل غلظت اولیه فنل 5/0، 1، 2، 4، 8، 16، 32 و 64 میلی‌گرم در لیتر، دز جاذب 1/0، 2/0، 4/0، 8/0 و 6/1 گرم در لیتر در اندازه‌های مشخص شده مش بین 30 تا ۶۰ و ۶0 تا ۱۰۰ ، pH با مقادیر 2، 4، 6، 8، 10، 12 و زمان تماس 10،20، 30، 40، 50 ،60 دقیقه بررسی شد. همچنین ایزوترم‌های جذب فروندلیچ و لانگمیر به‌منظور تشریح ارتباط بین میزان محلول رنگی و جاذب تعیین شد. نتایج آزمایش‌ها نشان داد مؤثرترین ظرفیت جذب فنل در pH بهینه 2، دز جاذب بهینه 2/0 گرم در لیتر با مش 60 تا 100 و زمان تماس 10 دقیقه به‌دست آمد که بالای 95 درصد بود. با افزایش غلظت فنل، کارایی حذف نیز افزایش یافت؛ اما این سرعت حذف در غلظت‌های بالا کمتر بود. همچنین فرایند جذب با مدل فروندلیچ انطباق بیشتری داشت. بر اساس یافته‌های حاصل از مطالعه حاضر، نتیجه‌گیری می‌شود که پوسته غلاف گیاه آکاسیاتورتیلیس با توجه به کارایی بالا، می‌تواند به‌عنوان جاذب طبیعی مؤثر، کارآمد و در عین‌ حال ارزان قیمت در حذف فنل از محلول‌های آبی مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Efficiency of Acacia Tortillis Plant Pod Shell as a Low Cost and Available Adsorbent for the Removal of Phenol

نویسندگان [English]

  • Hossien JafariMansoorian 1
  • AmirHossein Mahvi 2
  • Ahmad Jonidi Jafari 3
  • Mohammad Malakootian 4
1 Faculty Member of Health Faculty, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan and Member of Young Researchers and Elite Clube, Hamadan Branch, Islamic Azad University, Hamadan, Iran
2 Assist. Prof. of Environmental Health Eng., Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
3 . Assoc. Prof. of Environmental Health Eng., Faculty of Public Health, Iran University of Medical Sciences, Tehran, Iran
4 Prof. of Environmental Health Eng. Research Center and Dept. of Environmental Health, Kerman University of Medical Sciences, Kerman, Iran
چکیده [English]

The presence of nondegradable toxic compounds such as phenol in the environment has nowadays led to many health and environmental problems. The present empirical study was conducted on the lab scale to evaluate the efficiency of Acacia tortillis pod shell as a new alternative and low cost adsorbent for removing phenol from aqueous solutions. The experiment was performed in a batch system and the effects of important operation variables including initial phenol concentrations of 0.5, 1, 2, 4, 8, 16, 32, and 64 mg/l, absorbent doses of 0.1, 0.2, 0.4, 0.8, and 1.6g/l in predetermined mesh sizes (ranging over 30-60 and 60-100), pH levels of 2, 4, 6, 8, 10, and 12, and contact times of 10, 20, 30, 40, 50, and 60 min were evaluated. Finally, the Freundlich and Langmuir adsorption isotherms were determined in order to describe the relationship between the colored solution and the absorbent. Results showed that the highest phenol absorption efficiency achieved was above 95% which was obtained with an optimum pH level of 2, an optimum absorbent dose of 0.2 g/l, and a mesh size of 60-100 for a contact time of 10 minutes and at a low pollutant concentration. Increasing phenol concentration increased its removal efficiency but this removal rate was lower at extreme concentrations. Also, the adsorption process was found to be more compatible with the Freundlich model. Based on the results obtained, the pod shells of Acacia tortillis pod shell may be claimed to be an effective, efficient, and cheap absorbent for the removal of phenol from aqueous solutions.

کلیدواژه‌ها [English]

  • Phenol
  • Agricultural Solid Waste
  • Acacia Tortillis
  • Adsorption Isotherm
1. Abdelwahab, O., Amin, N.K., and El-Ashtoukhy, E.S.Z. (2009). “Electrochemical removal of phenol from oil refinery wastewater.” J. of Hazardous Materials, 163(2-3), 711-716.

2. Shen, S., Chang, Z., and Liu, H. (2006). “Three-liquid-phase extraction systems for separation of phenol and p-nitrophenol from wastewater.” J. of Separation and Purification Technology, 49(3), 217-222.

3. Adak, A., and Pal, A., (2006). “Removal of phenol from aquatic environment by SDS-modified alumina: Batch and fixed bed studies.” J. of Separation and Purification Technology, 50(2), 256-262.

4. Adak, A., Pal, A., and Bandyopadhyay, M. (2006). “Removal of phenol from water environment by surfactant-modified alumina through adsolubilization.” J. of Colloids and Surfaces A: Physicochemical and Engineering Aspects, 277(1-3), 63-68.

5. Bi, X.-Y., Wang, P., Jiang, H., Xu, H.Y., Shi, J., and Huang, J. I. (2007). “Treatment of phenol wastewater by microwave-induced ClO2-CuOx/Al2O3 catalytic oxidation process.” J. of Environmental Sciences, 19(12), 1510-1515.

6. Chen, S., U, P., Change, Q., Lu, G. Q. M., Hao, Z. P., and Liu, S. (2009). “Studies on adsorption of phenol and 4-nitrophenol on MgAl-mixed oxide derived from MgAl-layered double hydroxide.” J. of Separation and Purification Technology, 67(2), 194-200.

7. Gondal, M.A., Sayeed, M.N., and Seddigi, Z. (2008). “Laser enhanced photo-catalytic removal of phenol from water using p-type NiO semiconductor catalyst.” J. of Hazardous Materials, 155(1-2), 83-89.

8. Hayat, K., Gondalal, M.A., Khaled, M. M., Ahmed, S., and Shemsi, A.S. (2011). “Nano ZnO synthesis by modified sol gel method and its application in heterogeneous photocatalytic removal of phenol from water.” Applied Catalysis A: General, 393(1-2), 122-129.

9. Kujawski, W., Warsszawski, A., Ratajczak, W., Parbski, T., Capal, W., and Ostrowska, I. (2004). “Removal of phenol from wastewater by different separation techniques.” J. of Desalination, 163(1-3), 287-296.

10. Kujawski, W., Warsszawski, A., Ratajczak, W., Parbski, T., Capal, W., and Ostrowska, I. (2004). “Application of pervaporation and adsorption to the phenol removal from wastewater.” J. of Separation and Purification Technology, 40(2), 123-132.

11. Ma, J., and Zhu, L. (2007). “Removal of phenols from water accompanied with synthesis of organobentonite in one-step process.” J. of Chemosphere, 68(1), 1883-1888.

12. Marotta, E., Marotta, E., Ceriani, E., Schiorlin, M., Ceretta, C., and Paradisi, C. (2012). “Comparison of the rates of phenol advanced oxidation in deionized and tap water within a dielectric barrier discharge reactor.” J. of Water Research, 46(19), 6239-6246.

13. Praveen, P., and Loh, K.C. (2013). “Trioctylphosphine oxide-impregnated hollow fiber membranes for removal of phenol from wastewater.” J. of Membrane Science, 437, 1-6.

14. Senel, S., Kara, A., Alsancak, G., and Denizli, A. (2006). “Removal of phenol and chlorophenols from water with reusable dye-affinity hollow fibers.” J. of Hazardous Materials, 138(2), 317-324.

15. Tilaki, R.D. (2009). “Effect of assimilable substrate and plant density on removal of phenol from water by Lemna minor.” J. of Toxicology Letters, 189, 206-206

16. Xu, J.Q., Duan, W.H., Zhou, X. Z., and Zhou, J. Z. (2006). “Extraction of phenol in wastewater with annular centrifugal contactors.” J. of Hazardous Materials, 131(1-3), 98-102.

17. Turhan, K., and Uzman, S. (2008). “Removal of phenol from water using ozone.” J. of Desalination,
229(1-3), 257-263.

18. Tor, A., Cengeloglu, Y., Aydin, M.E., and Ersoz, M. (2006). “Removal of phenol from aqueous phase by using neutralized red mud.” J. of Colloid and Interface Science, 300(2), 498-503.

19. Kamble, S.P., Mangrulaka, P.A., Bansiwal, A. K., and Rayalu, S.S. (2008). “Adsorption of phenol and o-chlorophenol on surface altered fly ash based molecular sieves.” Chemical Engineering Journal, 138(1-3), 73-83.

20. Kilic, M., Apaydin-Varol, E., and Putun, A.E. (2011). “Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: Equilibrium, kinetics and thermodynamics.” J. of Hazardous Materials, 189(1-2), 397- 403.

21. Wiliam, E., Cooper, Jr., and Martin, J.W. (2000). “Islands in a sea of sand: Use of Acacia tree by tree skinks in the Kalahari Desert.” J. of Arid Environments, 44, 373-381.

22. Sher, A.A., Wiegand, K., and Ward, D. (2001). “Do acacia and tamarix trees compete for water in the negev desert?.” J. of Arid. Environments, 74, 338-343.

23. Suresh, S., Srivastava, V.C., and Mishra, I.M. (2011). “Adsorptive removal of phenol from binary aqueous solution with aniline and 4-nitrophenol by granular activated carbon.” Chemical Engineering Journal, 171(3), 997-1003.

24. Srivastava, V.C., Swamy, M.M., Mall, I.D., Prasad, B., and Mishra, I.M. (2006). “Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 272(1-2), 89-104.

25. Saitoh, T., Asano, K., and Hiraide, M. (2011). “Removal of phenols in water using chitosan-conjugated thermo-responsive polymers.” J. of Hazardous Materials,85(2-3), 1369-1373.

26. El-Naas, M.H., Al-Zuhair, S., and Alhaija, M.A. (2010). “Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon.” Chemical Engineering Journal, 162(3),
997-1005.

27. Nayak, P.S., and Singh, B.K. (2007). “Removal of phenol from aqueous solutions by sorption on low cost clay.” J. of Desalination, 207(1-3) 71-79.

28. Kuleyin, A. (2007). “Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite.” J. of Hazardous Materials, 144(2-1), 307-315.

29. Ali, O., Namane, A., and Hellal, A. (2013). “Use and recycling of Ca-alginate biocatalyst for removal of phenol from wastewater.” J. of Industrial and Engineering Chemistry, 19(4), 1384-1390.

30. Lin, S.H., and Juang, R.S. (2009). “Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review.” J. of Environmental Management, 90(3), 1336-1349.

31. Khattri, S.D., and Singh, M.K. (2009). “Removal of malachite green from dye wastewater using neem sawdust by adsorption.” J. of Hazardous Materials, 167(1-3), 1089-1094.

32. Santhi, T., Manonmani, S., Vasantha, V.S., and Chang Y.T. (2011). “A new alternative adsorbent for the removal of cationic dyes from aqueous solution.” Arabian J. of Chemistry, DOI : 10. 1016/j. arabic 2011.06.004.

33. Roostaei, N., and Tezel, F.H. (2004). “Removal of phenol from aqueous solutions by adsorption.” J. of Environmental Management, 70(2), 157-164.

34. Huang, J., Wang, X., Jin, Q., Liu, Y., and Wang, Y. (2007). “Removal of phenol from aqueous solution by adsorption onto OTMAC-modified attapulgite.” J. of Environmental Management, 84(2), 229-236.