Performance of Iron Nanoparticles in Removing BOD from Wastewater

Document Type : Research Paper

Authors

1 Assoc. Prof. of Energy and Environmental Engineering, Islamic Azad University, Sciences and Research Branch, Tehran

2 Prof. of Environmental Engineering, University of Tehran, Tehran

3 Assist. Prof. of Energy and Environmental Engineering, Islamic Azad University, Sciences and Research Branch, Tehran

4 Former Graduate Student of Energy and Environmental Engineering, Islamic Azad University, Sciences and Research Branch, Tehran

5 Former Graduate Student, Faculty of Engineering, Islamic Azad University, Sciences and Research Branch, Hamedan

Abstract

Nanotechnology has nowadays found applications in a wide variety of fields including industrial effluent treatment. In this study, iron nanoparticles were synthesized via Ferric choloride reduction using sodium burohydrate to investigate the effects of retention time, nanoparticle concentration, BOD concentration, and pH on the efficiency of BOD removal from wastewater. To determine the optimum contact time, known quantities of the nanoparticles thus prepared were added to wastewater samples of two different concentrations with known values of BOD5 over peirods ranging from 15 to 180 minutes. In a second stage of the study, varying amounts of iron nanoparticles were added in two steps to wastewater samples with a fixed BOD5 concentration and allowed to remain over the optimum contact time to determine the BOD removal efficiency. Subsequently, fixed amounts of iron nanoparticles were added to wastewater samples with varying BOD levels and the BOD removal efficiency was determined. Finally, varying amounts of iron nanoparticles were added to wastewater samples with varing BOD levels over the optimum retention time to investigate the effects of pH variations in each stage on BOD removal efficiency and to determine the optimum pH level. Results indicated an optimum contact time of 45 minutes, an optimum iron nanoparticle content of 3 g for samples with BOD5 concentrations of 35 and 116 mg/l, and an optimum nanoparticle quantity of 5 g for samples with a BOD5 of 289 mg/l. The optimum BOD5 concentration was found to be 289 mg/l and the optimum pH was determined to be 3. At the optimum contact time and at high pollution loads, an acidid pH yields the highest contaminant removal with increasing nanoparticle additions.

Keywords

Main Subjects


Abaspoor, M., 1997, Environmental engineering, 1st Ed., Tehran. (In Persian)
Barnes, R. J., Vandergast, Ch. J., Riba, O., Lentovirta, L.E., Prosser, J.I., Dobson, P. J. & Thompson, I. P., 2010, "The impact of zero-valent iron nanoparticles on a river water bacterial community original research Article", Journal of Hazardous Materials, 184, 73-80.
Clesceri, L.S., Greenberg, A. E. and Eaton, A. D., 1998, Standard methods for the examination of water and wastewater, 20th Ed., USA.
Crane, R.A., Dickinson., M., Popescu, I.C. & Scott, T.B., 2011, “Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water", Original Research Article Water Research, 45, 2931-2942.
Habashi, N., 2010, "Evaluation of nitrat removal from water by iron nanoparticles", MSc Thesis, Tehran University, Tehran. (In Persian)
Leyli, M., and Samaee, M. & Dehestani, S., 2010, Municiple wastewater management in developing countries: Principles and Engineering,1st  Ed., Andisheh Rafi Pub., Tehran. (In Persian)
Moezi, A., 2011, "Evaluation of lead removal from aquatic environmenty by Iron nanoparticles", MSc Thesis, Islamic Azad University, Sciences and Research Branch, Tehran. (In Persian)
Mohamadiyan, M., 2012, "Evaluation of BOD removal from wastewater by Iron nanoparticles", MSc Thesis, Islamic Azad University, Scicneces and Research Branch, Tehran. (In Persian)
Rahmani, A., Ghafari, H., Samadi, M. & Zarabi, M., 2011, "Synthesis of zero valent Iron Nanoparticles (nZVI) and its efficiency in arsenic removal from aqueous solutions", Journal of Water and Wastewater, Vol. 22 No. 1 (77), 35-41. (In Persnan)
Salavati Nyiasary, M. & Sabet, M., 2010, Nanotechnology and water treatment, 1st Ed., Sokhanvaran Pub., Tehran. (In Persian)
Sayiad Jahromy, Sh., 2010, "Evaluation of nitrat removal from water by Zero Iron Nanoparticles", MSc. Thesis, Shahid Beheshty University, Tehran. (In Persian)