بهینه‌سازی سامانه‌های تأمین آب نوبتی با استفاده از الگوریتم ازدحام ذرات و تحلیل هیدرولیکی مبتنی بر فشار

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استاد دانشکده مهندسی عمران و عضو قطب علمی مهندسی و مدیریت زیرساخت‌های عمرانی، پردیس دانشکده‌های فنی، دانشگاه تهران، تهران، ایران

2 دانشجوی کارشناسی‌ ارشد، دانشکده مهندسی عمران، پردیس دانشکده‌های فنی، دانشگاه تهران، تهران، ایران

3 استادیار، دانشکده مهندسی عمران، دانشگاه صنعتی ارومیه، ارومیه، ایران

10.22093/wwj.2019.108365.2553

چکیده

در این پژوهش با استفاده از تحلیل هیدرولیکی مبتنی بر فشار و الگوریتم بهینه‌سازی ازدحام ذرات، بهینه‌سازی تأمین آب نوبتی با هدف بیشینه‌سازی یکنواختی توزیع آب در شبکه و قابلیت اطمینان انجام شد. در ادامه با محاسبه برگشت‌پذیری به‌عنوان یک معیار کارایی به ارزیابی عملکرد سیستم پرداخته شد و نتایج حاصل از تحلیل هیدرولیکی مبتنی بر فشار با تحلیل هیدرولیکی مبتنی بر تقاضا مقایسه شد. به این منظور الگوریتم بهینه‌سازی ازدحام ذرات و مدل تحلیل هیدرولیکیEPANET  تلفیق شد و با اعمال تغییراتی در روند محاسبات هیدرولیکی، امکان تحلیل هیدرولیکی مبتنی بر فشار نیز مهیا شد. مدل ارائه شده، بر روی یک شبکه نمونه در چندین سناریوی کم‌آبی بررسی شد. مطابق نتایج به‌دست آمده، تابع هدف و یا به‌عبارتی یکنواختی توزیع آب برای سناریوهایی با تنش آبی کمتر، مقدار بیشتری دارد، به‌طوری که بیشترین مقدار، در حالت بدون کمبود حاصل شد. همچنین مقدار تابع هدف برای سناریوهای با تحلیل هیدرولیکی مبتنی بر فشار در حدود 20 درصد بیشتر از مقدار آن برای سناریوهای با تحلیل هیدرولیکی مبتنی بر تقاضا به‌دست آمد. با مقایسه مقدار به‌دست آمده برای معیار‌های کارایی سیستم، مشاهده ‌شد که میزان برگشت‌پذیری شبکه‌ای و گرهی در اکثر سناریوهای با تحلیل هیدرولیکی مبتنی بر تقاضا بیشتر از سناریوهای با تحلیل هیدرولیکی مبتنی بر فشار بود که در توجیه آن می‌توان گفت که در تحلیل هیدرولیکی مبتنی بر تقاضا از آنجایی که تأمین آب، بدون در نظرگیری مقدار فشار گرهی انجام می‌شود، بنابراین مقدار دبی‌ها واقعی نیست و حالت شکست در تأمین آب مورد تقاضای گره‌ها به‌ندرت رخ می‌دهد. همچنین معیار برگشت‌پذیری، با بیشترین مقدار در حدود 99 درصد برای آستانه کارایی 70 درصد و در حالت گرهی به‌دست آمد. با استفاده از مدل‌های بهینه‌سازی، یکنواختی و عدالت توزیع آب بین گره‌های مصرف و در نتیجه رضایت ذی‌نفعان بیشینه می‌شود. در این راستا، استفاده از مدل‌های تحلیل هیدرولیکی مبتنی بر فشار، امکان شبیه‌سازی واقعی‌تر رفتار شبکه‌های توزیع آب را مهیا می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of Intermittent Water Supply Systems Using Particle Swarm Optimization Algorithm and Pressure Driven Hydraulic Analysis

نویسندگان [English]

  • Massoud Tabesh 1
  • Reza Safaiee Broujeni 2
  • Akbar Shirzad 3
  • Meisam Shokoohi 2
1 Prof., Center of Excellence for Engineering and Management of Civil Infrastructures, School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran
2 MSc Student, School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran
3 Assist. Prof., Faculty of Civil Engineering, Urmia University of Technology, Urmia, Iran
چکیده [English]

In this research, intermittent water supply is optimized using pressure driven hydraulic analysis and particle swarm optimization algorithm with the aim of maximizing the uniformity of water distribution in the network and reliability. In the following, by calculating the resiliency as an efficiency criterion, system performance is evaluated. Obtain­ed results from pressure driven hydraulic analysis and demand driven hydraulic analysis are compared. In this regard, the particle swarm optimization algorithm and the EPANET hydraulic analysis model are linked. Pressure driven hydraulic analysis is performed by applying some modifications on hydraulic calculation process. The proposed model is evaluated on a sample network in several water shortage scenarios. According to the obtained results, the objective function (uniformity of water distribution) has higher values for the scenarios with lower water shortage, so that the maximum value is relevant to the scenario without water shortage. The values of the objective function for scenarios with pressure driven hydraulic analysis are 20 % more than its values for scenarios with demand driven hydraulic analysis. By comparing the values obtained for system efficiency criteria it can be observed that the network resiliency and nodal resiliency for most of the scenarios with demand driven hydraulic analysis are more than their values for scenarios with pressure driven hydraulic analysis. This is because of the independency of nodal discharge from nodal pressure in demand driven hydraulic analysis that leads to unreal values for nodal discharges and therefore, hydraulic failure accrues rarely. The maximum value achieved for resiliency is around 99 % which is relevant to efficiency threshold of 70 % in nodal form. Uniformity and equity of water distribution between demand nodes and as a result satisfaction of stakeholders can be maximized by using optimization models. Employing pressure driven hydraulic analysis models makes it possible to simulate the behavior of water distribution networks realistically.

کلیدواژه‌ها [English]

  • water shortage
  • Intermittent Supply
  • Pressure Driven Hydraulic Analysis
  • Particle Swarm Optimization Algorithm
  • resiliency

Alperovits, E., & Shamir, U. 1977. Design of optimal water distribution systems. Water Resource Research, 13(6), 885-900.

Ameyaw E. E., Memon F. A., & Bicik J. 2013. Improving equity in intermittent water supply systems. Journal of Water Supply: Research and Technology-AQUA, 62(8), 552-562.

Andey, S. P., & Kelkar, P. S. 2009. Influence of intermittent and continuous modes of water supply on domestic water consumption. Water Resources Management, 23(12), 2555-2566.

Bozorg-Haddad, O., Hoseini-Ghafari, S., Solgi, M., & Loaiciga, H. A. 2016. Intermittent urban water supply with protection of consumers’ welfare. Journal of Pipeline Systems Engineering and Practice, 7(3), 04016002.

Coelho, S. T., James, S., Sunna, N., Jaish, A. A., & Chatila, J. 2003. Controlling water quality in intermittent supply systems. Water Supply, 3(1-2), 119-125.

De Marchis, M., Fontanazza, C. M., Freni, G., La Loggia, G., Napoli, E.,& Notaro V. 2010. Modelling analysis of distribution network filling process during intermittent supply. In Proceedings of Computing and Control in the Water Industry, Boxal and Maksimovic, Taylor and Francis Group, London, 189-194.

Eberhart, R. C., & Kennedy, J. 1995. A new optimizer using particle swarm theory. In Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1, 39-43.

Hashimoto, T., Stedinger, J. R., & Loucks, D. P. 1982. Reliability, resiliency and vulnerability criteria for water resources system performance evaluation. Water Resources Research, 18(1), 14-20.

Ingeduld, P., Pradhan, A., Svitak, Z., & Terrai, A. 2006. Modelling intermittent water supply systems with EPANET. 8th Annual Water Distribution Systems Analysis Symposium, Cincinnati, USA, 1-8.

Islamic Republic of Iran Vice Presidency for Strategic Planning and Supervision (IRIVPSPS). 2011. Guidelines for design of urban and rural water supply and distribution systems, Report No. 117-3 (First Revision), Islamic Republic of Iran Vice Presidency for Strategic Planning and Supervision Press. (In Persian)

Karimi, M., Ahrar Yazdi, B., & Ahrar Yazdi, B. 2017. Comparison of particle swarm optimization and genetic algorithm for optimization of CGAM problem. Sharif Journal of Mechanical Engineering, 33.3(1), 129-136. (In Persian)

Samsami, R. 2013. Comparison between genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO) techniques for NOx emission forecasting in Iran. World Applied Sciences Journal, 28(12), 1996-2002.

Sashikumar, N., Mohankumar, M. S., & Sridharan, K. 2003. Modeling an intermittent water supply. In Proceedings of World Water and Environmental Resources Congress, USA, June, 23-26.

Shirzad, A., Tabesh, M., Farmani, R., & Mohammadi, M. 2013. Pressure-discharge relations with application in head driven simulation of water distribution networks. Journal of Water Resources Planning and Management, 139(6), 660-670.

Shokoohi, M., Tabesh, M., & Nazif, S. 2017. Water quality based multi-objective optimal design of water distribution systems. Water Resources Management, 31(1), 93-108.

Soltanjalili, M., Bozorg Haddad, O., & Marino, M. A. 2013. Operating water distribution networks during water shortage conditions using hedging and intermittent water supply concepts. Journal of Water Resources Planning and Management, 139(6), 644-659.

Tabesh, M., & Zia, A. 2003. Dynamic management of water distribution networks based on hydraulic performance analysis of the system. Journal of Water Science and Technology: Water Supply, 3(1-2), 95-102.

Vairavamoorthy, K. 1994. Water distribution networks: design and control for intermittent supply. PhD Thesis, Imperial College of Science, Technology and Medicine, London UK.

Vairavamoorthy, K., Gorantiwar, S. D., & Mohan, S. 2007. Intermittent water supply under water scarcity situations. Water International, 32(1), 121-132.

Wagner, J., Shamir, U., & Marks, D. 1988. Water distribution reliability: simulation methods. Journal of Water Resources Planning and Management, 114(3), 276-294.