پیش‌بینی تعداد گرفتگی در شبکه فاضلاب شهری (مطالعه موردی: منطقه دو اصفهان)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی و مدیریت منابع آب، گروه عمران، دانشکده مهندسی عمران و حمل و نقل، دانشگاه اصفهان، اصفهان، ایران

2 استادیار، گروه عمران، دانشکده مهندسی عمران و حمل و نقل، دانشگاه اصفهان، اصفهان، ایران

10.22093/wwj.2019.143553.2731

چکیده

امروزه شبکه فاضلاب بخش جدایی‌ناپذیر زندگی شهری محسوب می‌شود. با توجه به اهمیت این شبکه به‌عنوان یکی از زیرساخت‌های شهری، وقوع شکست در این سیستم علاوه بر توقف سرویس‌دهی، منجر به ایجاد پیامدهای اجتماعی، اقتصادی و محیط‌زیستی ‌زیادی می‌شود. از این‌رو ارزیابی وضعیت شبکه‌های فاضلاب و شکست‌هایی که در شبکه اتفاق می‌افتد یک رویکرد مهم در مدیریت آن است. در حالت کلی منظور از شکست، کلیه حالاتی است که عملکرد سیستم با مشکل مواجه می‌شود. به‌طور کلی روش‌های هوش مصنوعی به‌عنوان روشی کم‌هزینه به‌منظور پیش‌بینی شکست مورد استفاده قرار می‌گیرند. در این پژوهش از برنامه‌ریزی ژنتیک به‌منظور پیش‌بینی تعداد گرفتگی (شکست هیدرولیکی) در شبکه فاضلاب، استفاده و نتایج آن با نتایج حاصل از مدل شبکه عصبی مقایسه ‌شد. به‌این منظور قسمتی از شبکه فاضلاب شهر اصفهان به‌عنوان مطالعه موردی بررسی ‌شد. با توجه به پارامترهای تأثیرگذار بر شکست هیدرولیکی، پارامترهایی نظیر سن، طول، شیب و عمق دفن لوله‌ها به‌عنوان ورودی و تعداد گرفتگی به‌عنوان خروجی مدل در نظر گرفته ‌شد. در این پژوهش از اطلاعات مربوط به گرفتگی در شبکه فاضلاب مربوط به سال‌های 1394 و 1395 استفاده شد که 70 درصد داده‌ها برای آموزش و 30 درصد برای آزمایش به‌کار رفت. اطلاعات به سه شکل دسته‌بندی شد و سه مدل مختلف ارائه شد. در مدل اول اطلاعات بر اساس شیب و در دو مدل دیگر اطلاعات بر اساس عمق دفن، دسته‌بندی شدند و نتایج تحلیل ‌شد. بررسی نتایج نشان ‌داد که هر سه مدل دارای نتایج قابل قبولی هستند. همچنین مقایسه نتایج دو مدل نشان ‌داد که دقت روش برنامه‌ریزی ژنتیک نسبت به شبکه عصبی بهتر است. به‌طور نمونه، در برنامه‌ریزی ژنتیک مقدار R2  و RMSE  برای مدل دوم در مرحله آموزش، 97/0 و 8/0 و در مرحله آزمایش به‌ترتیب برابر 94/0 و 69/0 بود که این مقادیر در شبکه عصبی در مرحله آموزش، 96/0 و 95/0 و در مرحله آزمایش به‌ترتیب برابر 87/0 و 96/0 بود. با بررسی نتایج به‌دست آمده، برتری روش برنامه‌ریزی ژنتیک نسبت به شبکه عصبی مشهود است. همچنین مدل دوم نتایج بهتری داشت. نتایج حاصل از این مدل‌ها را می‌توان در زمینه تعمیرات پیشگیرانه، اولویت‌بندی تعمیرات و بازرسی‌های شبکه فاضلاب به‌کار برد و در نتیجه از وقوع حوادث ناگهانی در شبکه جلوگیری نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Number of Blockage Prediction for Sanitary Sewer Networks (Case Study: Isfahan Region 2)

نویسندگان [English]

  • Pegah Hoseingholi 1
  • Ramtin Moeini 2
  • Mohammad Reza Zare 2
1 MSc Student, Dept. of Civil Engineering, Faculty of Civil Engineering and Transportation, University of Isfahan, Isfahan, Iran
2 Assist. Prof., Dept. of Civil Engineering, Faculty of Civil Engineering and Transportation, University of Isfahan, Isfahan, Iran
چکیده [English]

Wastewater network is an inseparable part of urban life. Due to importance of this network as one of the urban infrastructure, the failure of this system will lead to stopping service, causing many social, economic and environmental consequences. Hence, assessing the wastewater networks condition and its failure is an important approach for managing it. Generally, failure of system means any condition which is lead to stopping service. In general, artificial intelligence methods are used as a low-cost method to predict failure. In this research, genetic programming (GP) is used to predict the number of blockage (hydraulic failure) in the wastewater network and its results are compared with the results of the artificial neural network (ANN). As a case study, here, a part of Isfahan wastewater network is investigated. The parameters such as age, pipe length, slope and depth as input data and the number of blockage are considered as the output data of the model. In this research, the number of blockage data in the wastewater network at 1394 and 1395 are used, in which the 70% of the data is used for training and 30% for the test. These data are classified in three way leading to three model. In the first model, data are classified based on the slope and in two other models the data are classified according to the cover depth. The results show that all models predicts the number of blockage with good accuracy. In addition the accuracy of the result of GP model is better than the ANN model. For example, for GP model, the values of R2 and RMSE for the second model at the training stage are 0.97 and 0.8 and at the test stage are equal to 0.94 and 0.69, respectively. However these values for ANN model are 0.96 and 0.95 at the training stage and 0.87 and 0.96 at the test stage respectively. These results show the superiority of the GP model in comparison with ANN model in which the results of second proposed model are better. The results of these proposed model can be used for preventive maintenance, prioritization of sewage network repairs and inspections, and finally to prevents the occurrence of suddenly accidents.

کلیدواژه‌ها [English]

  • Hydraulic Failure Prediction
  • Genetic programming
  • Wastewater Network
  • Number of Blockage
  • Artificial Neural Network

Abraham, D. M. & Wirahadikusumah, R. 1998. Optimization modeling for sewer network management. Construction Engineering Management, 124, 402-410.

Anbari, M. J. & Tabesh, M. 2015. Calculate the probability of failure event in wastewater collection networks using the Beisian network. Journal of Water and Wastewater, 27(3), 48-61. (In Persian)

Ariaratnam, S. T., El-Assaly, A., Members, A. & Yang, Y. 2001. Assessment of infrastructure inspection needs using logistic models. Journal of Infrastructure Systems, 7, 160-165.

Baik, H. S., Jeong, H. S. & Abraham, D. M. 2006. Estimating transition probabilities in markov chain-based deterioration models for management of wastewater systems. Journal of Water Resources Planning and Management, 132, 15-24.

Baur, R. & Herz, R. 2002. Selective inspection planning with ageing forecast for sewer types. Water Science and Technology, 46, 389-396.

Chughtai, F. & Zayed, T. 2008. Infrastructure condition prediction models for sustainable sewer pipelines. Journal of Performance of Constructed Facilities, 22, 333-341.

Gedam, A., Mangulkar, S. & Gandhi, B. 2016. Prediction of sewer pipe main condition using the linear regression approach. Journal of Geoscience and Environment Protection, 4, 100-105.

Hahn, M., Palmer, R. N. & Merrill, M. S. 1999. Prioritizing sewer line inspection with an expert system. In: TEMPE (ed.) 29th Annual Water Resources Planning and Management Conference, Arizona, United States.

Kabir, G., Balekelay, N., Balek, C., Tesfamariam, S. & Asce, M. 2018. Sewer structural condition prediction integrating bayesian model averaging with logistic regression. Journal of Performance of Constructed Facilities, 32, 1-10.

Koza, J. 1992. Genetic programming: on the programming of computers by means of natural selection, MIT Press, USA

Laakso, T., Kokkonen, T., Mellin, I. & Vahala, R. 2018. Sewer condition prediction and analysis of explanatory factors. Water, 10, 1-17.

Mashford, J., Marlow, D., Tran, D. & May, R. 2011. Prediction of sewer condition grade using support vector machines. Journal of Computing in Civil Engineering, 25, 283-290.

Mcdonald, S. E. & Zhao, J. Q. 2001. Condition assessment and rehabilitation of large sewers. International Conference on Underground Infrastructure Research, University of Waterloo, Canada.

Najafi, M. & Kulandaivel, G. 2005. Pipeline condition prediction using neural network models. Pipeline Division Specialty Conference, Houston, Texas, United States.

Rutsch, M. & Uibrig, H. 2000. Classification system to estimate the leakage of sewers. <<apuss.insa-lyon.fr>> (July 2018).

Ruwanpura, J., Ariaratnam, S. T. & El-Assaly, A. 2004. Prediction models for sewer infrastructure utilizing rule-based simulation. Civil Engineering and Environmental Systems, 21, 169-189.

Saleh, M. & Khakivatan, R. 2009. Problems of sewage networks operation and the role of video meter in better operation of networks. Second National Water and Wastewater Conference with Operation Approach, University of Water and Power Industry, Tehran, Iran. (In Persian)

Silva, S. 2007. Gplab a genetic programming toolbox for Matlab, Envolutonary and Complex Systems group, University of Coimbra, Protugal.

Soltani, A., Ghorbani, M., Fard, A., Darbandi, S. & Farsadizade, D. 2009. Genetic planning and its application in modeling the runoff rainfall process. Journal of Water and Soil Scinece, 20.1 (4), 61-71. (In Persian)