ارزیابی عملکرد مدل‌های بهینه‌سازی در کالیبراسیون و نشت‌یابی شبکه‌های توزیع آب با استفاده از مدل آزمایشگاهی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای عمران- آب، دانشگاه فردوسی مشهد

2 استاد گروه عمران، دانشکده مهندسی، دانشگاه فردوسی مشهد

چکیده

در این مقاله دقت نشت‌یابی مبتنی بر کالیبراسیون به‌روش کلونی مورچه‌ها مورد بررسی قرار گرفت. این روش برای دو شبکه شامل یک شبکه فرضی و یک شبکه آزمایشگاهی بررسی شد. نتایج تحلیل‌های صورت گرفته بر روی هر دو شبکه، ضمن تأیید امکان نشت‌یابی با استفاده از کالیبراسیون فشارهای گرهی، سرعت و همگرایی روش کلونی مورچه‌ها را مورد تأیید قرار دادند. بررسی‌های آزمایشگاهی نشان دادند که تعداد گره‌های دارای نشت و مقدار نشت، تأثیر جدی بر روی دقت روش دارند. در طی تحلیل‌های صورت گرفته مشخص شد که کمینه شدن اختلاف بین مقادیر اندازه‌گیری شده و محاسبه شده نمی‌تواند به‌عنوان تنها شاخص، اطمینان از صحت نتایج به‌دست آمده ایجاد کند، لذا دو روش برای ارزیابی صحت نتایج نشت‌یابی با استفاده از سایر جوابهای به‌دست آمده در طی کالیبراسیون که دارای برازندگی‌های مناسبی هستند، ارائه شد.

کلیدواژه‌ها


عنوان مقاله [English]

Performance Evaluation of Optimization Models for Calibration and Leakage Detection of Water Distribution Network Using Laboratorial Model

نویسندگان [English]

  • Ali Nasirian 1
  • Mahmoud Faghfour Maghrebi 2
چکیده [English]

In this paper the accuracy of leakage detection using Ant Colony Optimization (ACO) has been investigated. The method has been evaluated on two networks consist of a hypothetical and a laboratorial networks. The results have proved the capability of the method and have confirmed the good convergence and speed. Experimental evaluations have shown serious effects of the number and value of leakage on the results. It is proved that a good fitness cannot guarantee the accuracy of the results. To cope with this problem two validation methods based on a number of obtained results have been developed.

کلیدواژه‌ها [English]

  • Calibratioin
  • Ants Colony
  • Distribution network
  • Leakage Detection

1. Karamouz, M., Tabesh, M., Nazif, S., and Moridi, A. (2005). “Estimation of hydraulic pressure in water networks using artificial neural networks and fuzzy logic.” J. of Water & Wastewater, 53, 3-14. (In Persian)

2. Ekuakille, A. L., Vendramin, G., and Trotta, A. (2009). “Spectral analysis of leak detection in a zigzag pipeline: A filter diagonalization method-based aalgorithm application.” Measurement, 42,  358-367.

3. Tabesh, M., Aghaei, A., and Soltani, J. (2011). “Study (prediction) of main pipes break rates in water distribution systems using intelligent and regression methods.” J. of Water and Wastewater, 78, 2-14. (In Persian)

4. Soltani, A., and Faghfour Maghrebi, M. F. (2009). “Intelligent pressure management to reduce leakage in urban water supply networks, a case study of Sarafrazan district, Mashhad.” J. of Water and Wastewater, 71, 99-104.(In Persian)

5. Covas, D., and Ramos, H. (2010). “Case studies of leak detection and location in water pipe systems by inverse transient analysis.” J. of Water Resources Planningand Management, 136(2), 248-257.

6. Hunaidi, O., Chu, W., Wang, A., and Guan, W. (1999). “Leakage detection methods for plastic water distribution pipes.” In Advancing the Science of Water. AWWA Research Foundation Technology Transfer Conf., Denver.

7. Brunone, B. (1999). “Transient test-based technique for leak detection in outfall pipes.” J. of Water Resources Planning and Management, 125(5), 302-306.

8. Zorriasateyn, N., and Borghei, S. M. (2005). “Dynamic simulation of water networks to control and reduce physical unaccounted-for water.” J. of Water and Wastewater, 55, 49-59. (In Persian)

9. Pudar, R. S., and Ligget, J. A. (1992). “Leaks in pipe networks.” J. Hydraul. Eng, 118(7), 1031-1046.

10. Wu, Z. Y., and Sage, P. (2006). “Water loss detection via genetic algorithm optimization-based model calibration ” ASCE 8th Annual Int. Symp. on Water Distribution Systems Analysis, Cincinnati, Ohio.

11- Walski, T. M., Chase, D. V., Savic, D. A., Grayman, W., and Beckwith, S. (2002). Advanced water distribution modeling and management, Haested Press, Waterbury, CT USA.

12. Ormsbee, L. E., and Lingireddy, S. (1997). “Calibrating hydraulic network models.” J. of the American Water Works Association, 89(2), 44-54.

13. Boulos, P. F., and Wood, D. J. (1990). “Explicit calculation of pipe network parameters.” J. of Hydraulic Engineering, 116(11), 1329-1344.

14. Kang, D., and Lansey, K. (2011). “Demand and roughness estimation in water distribution systems.” J. of Water Resources Planning and Management, 137(1),  20-30.

15. Cheng, W., and He, Z. (2011). “Calibration of nodal demand in water distribution systems.” J. of Water Resources Planning and Management, 137(1), 31-40.

16. Kapelan, Z. S., Savic, D. A., and Walters, G. A. (2003). “Multiobjective sampling design for water distribution model calibration.” J. of Water Resources Planning and Management, 129(6), 466-479.

17. Wu, Z. Y., Burrows, R., Moorcroft, J., Croxton, N., and Limanond, S. (2010). “Pressure-dependent leakage detection method compared with conventional techniques.” Water Distribution System Analysis: Tucson, AZ, USA, 1083-1092.

18. Walski, T. M., DeFrank, N., Voglino, T., Wood, R., and Whitman, B. E. (2006). “Determining the accuracy of automated calibration of pipe network models.” 8th Annual Water Distribution Systems Analysis Symposium, Cincinnati, Ohio, USA.

19. Covas, D., and Ramos, H. (2001). “Hydraulic transients used for leakage detection in water distribution systems.” BHR Group 2001 Water Pipeline Systems,  227-241.

20. Vitkovsky, J., Lambert, M., Simpson, A., and Wang, X.-J. (2001). “An experimental verification of the inverse transient technique for leak detection.” 6th Conference on Hydraulics in Civil Engineering: The State of Hydraulics, Proceedings Barton, A.C.T.Institution of Engineers, Australia,  373-380.

21. Dorigo, M. (1992). “Optimization, learning and natural algorithms.” Ph.D. Thesis, Politecnico di Milano: Milan, Italy.

22. Zecchin, A. C., Simpson, A. R., Maier, H. R., Leonard, M., and Nixon, J. B. (2007) “Ant colony optimization applied to water distribution system design: Comparative study of five algorithms.” J. of Water Resources Planning and Management, 133(1),  87-92.

23. Afshar, M. H. (2007). “Application of ant algorithm to pipe network optimization.” Iranian Journal of Science and Technology, Transaction B, Engineering, 31(5), 487-500.

24. Maghrebi, M. F., Hasanzadeh, Y., and Yazdani, S. (2011). “Calibration of water supply systems based on ant colony optimization.” J. of Water and Wastewater, 85, 101-111. (In Persian)

25. Walski, T. M., Brill, E. D., Gessler, J., Goulter, I. C., Jeppson, R. M., Lansey, K., Lee, H. L., Liebman, J. C., Mays, L., Morgan, D. R., and Ormsbee, L. (1987). “Battle of networks models: Epilogue.” J. Water Resour. Plan. Manage., 113(2), 191-203.

26. Behzadian, K., Kapelan, Z., Savic, D., and Ardeshir, A. (2009). “Stochastic sampling design using a multi-objective genetic algorithm and adaptive neural networks.” Environmental Modelling and Software, 24,
530-541.

27.Kapelan, Z. S., Savic, D. A., and Walters, G. A. (2005). “Optimal sampling design methodologies for water distribution model calibration.” J. of Hydraulic Engineering, 131(3), 190-200.

28. Fazel, B., and Maghrebi, M. F. (2009). “Detecting leaks in urban water supply networks with field measurements of pressure node (case study golbahar city).” 8th Iranian Hydraulic Conference, Tehran University. (In Persian)

29. Nasirian, A., Maghrebi, M. F., and Arshadi, M. J. (2011). “Laboratorial evaluation of water loss in PPRC pipes in small diameter.” 10th Iranian Hydraulic Conference, Rasht, Iran. (In Persian)