حذف سرب از محلولهای آبی توسط نانو ذرات آهن صفر ظرفیتی اصلاح شده

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه خاکشناسی، دانشکده کشاورزی، دانشگاه شهید چمران، اهواز

2 استادیار گروه خاکشناسی، دانشکده کشاورزی، دانشگاه شهید چمران، اهواز

3 استاد گروه خاکشناسی، دانشکده کشاورزی، دانشگاه شهید چمران، اهواز

چکیده

این پژوهش با هدف بررسی اثر نانو ذرات آهن صفر ظرفیتی اصلاح شده با پوشش پلی‌اکریلیک اسید (PAA-nZVI) بر حذف سرب از محلولهای آبی به‌صورت آزمایش‌های ناپیوسته در مقیاس آزمایشگاهی انجام شد. به این منظور نانو ذرات آهن صفرظرفیتی اصلاح شده با پوشش پلی‌اکریلیک اسید ساخته شد و ویژگی‌های مورفولوژیکی و اندازه آنها توسط دستگاه پراش پرتو ایکس، میکروسکوپ الکترونی روبشی و دستگاه طیف سنج مادون قرمز مورد بررسی قرار گرفت. اثر عوامل مختلف مانند pH محیط آبی، زمان تماس، غلظت نانو ذرات و غلظت اولیه سرب بر حذف سرب بررسی شد. همچنین سه مدل سینتیک حذف درجه صفر، درجه اول و درجه دوم بر داده‌های حاصل از حذف سرب توسط PAA-nZVI برازش داده شد. نتایج آزمایش‌ها نشان داد که بیشترین میزان درصد حذف سرب از محلولهای آبی در pH برابر با 5 به‌دست آمد. زمان تماس 15 دقیقه و غلظت 5 گرم در لیتر نانو ذرات به‌ترتیب به‌عنوان زمان و غلظت بهینه انتخاب شدند. همچنین نتایج حاصل از مطالعات سینتیک حذف سرب نشان داد که مدل سینتیک درجه اول، در مقایسه با سایر مدل‌های سینتیکی، بیشترین کارایی را در برازش داده‌های حذف سرب دارد. بر اساس یافته‌های حاصل از پژوهش، PAA-nZVI پالایشگری مناسب به‌منظور پالایش سرب از محلولهای آبی به‌شمار می‌رود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of Pb(II) Removal from Aqueous Solutions Using Modified Nano Zero-Valent Iron Particles

نویسندگان [English]

  • Amirhossein Ramezanpoor 1
  • Ahmad Farrokhian Firouzi 2
  • Gholamabas Sayyad 2
  • Alireza Kiyasat 3
2 Shahid Chamran university- Agriculture faculty- Soil science department
چکیده [English]

This research was conducted in experimental scale with the aim of investigation effect of polyacrylic acid-stabilized zero-valent iron nanoparticles (PAA-nZVI) on lead removal from aqueous solution. In this regards, NZVI was synthesized with polyacrylic acid and their size and morphological characteristics were examined via X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transmission Infrared Spectroscopy (FTIR). To study the effect of PAA-nZVI on lead removal, pH of aqueous solution, contact time, PAA-NZVI concentration  and initial Pb(II) concentration were considered as variables. Furthermore, the experimental data of Pb(II)  removal were fitted using three kinetic models, namely Zero-order, First-order and Second-order.The results of experiments showed that maximum Pb(II) removal efficiency was observed at pH=5, 15 min contact time and 5 g/L PAA-nZVI concentration. Moreover, the results of kinetic studies indicated that among all applied kinetic models, First-order kinetic model had more better prediction than other kinetic models ofPb(II) removal. Based on the results of present research, PAA-NZVI is an efficient agent to remove Pb(II) from aqueous solutions.

کلیدواژه‌ها [English]

  • Pb(II) Removal
  • Aqueous solutions
  • Modified Nanoscale Zero-Valent Iron Particles
1. Shabani, M. (2008). “Determination of most suitable georeference method in order to prepare plan of pH and TDS of groundwater, (A case study: Arsanjan Plain).” Water Engineering Journal, 1 , 47-57 (In Persian)

2. Pronczuk, J., Brune, M-N., and Gore, F. (2011). “Children's environmental health in developing countries.” Encyclopedia Environmental Health, 1(2), 601-610.

3. Jayajumar, R., Menon, D., Manzoor, K., Nair, S.V., and Tamura, H. (2010). “Biomedical applications of chitin and chitosan based nanomaterials-A short review.” Carbohydrate Polymers, 82(2), 227-232.

4. Chen, J.Z., Tao, X.C., Xu, J., Zhang, T., and Liu, Z.L. (2005). “Biosortption of lead, cadmium and mercury by immobilized Microcystisaeruginosa in a column.” Process Biochem., 40(12), 3675-3679.

5. Ekpo, K.E., Asia, L.O., Amayo, K.O., and Jegede, D.A. (2008). “Determination of lead, cadmium and mercury in surrounding water and organs of some species of fish from Ikpobariver in Benin city, Nigeria.” International Journal of Physical Science, 3(11), 289-292.

6. Li, K.Q., and Wang, X.H. (2009). “Adsorptive removal of Pb(ll) by activated carbon prepared from Spartinaalterniflora: Equilibrium, kinetics and thermodynamics.” Bioresource Technology, 100(11), 2810-2815.

7. Lalhuraitluanga, H., Jayaram, K., Prasad, M.N.V., and Jumar, K.K. (2010). “Lead(ll) adsorption from aqueous solutions by raw and activated charcoals of Melocannabaccifera Roxburg (bamboo)-A comperative study.” J. of Hazardous Material, 175(1-3), 311-318.

8. WHO. (2008). Guidelines for drinking-water quality, secinf addendum, Vol.1, Recommendation, 3rd Ed., ISBN 978 92 4 154760 4. World Health Organization.

9. Institute of Standards and Industrial Research of Iran. (1992). Drinking water: Their physical and chemical properties, Iran. (In Persian)

10. Naeem, A., Saddique, M.T., Mustafa, S., Kim, Y., and Dilara, B. (2009). “Cation exchange removal of Pb from aqueous solution by sorption onto NIO.” J. of Hazardous Material, 168(1), 364-368.

11. Naiya, T.K., Bhattacharya, A.K., Das, S.K. (2009). “Adsorption of Cd(ll) and Pb(ll) from aqueous solution on activated alumina.” J. of Colloid and Interface Science, 331(1), 14-26.

12. Dialynas, E., and Diamadopoulos, E. (2009). “Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater.” Desalination, 238(1-3), 302-311.

13. Ricordel, C., Darchen, A., and Hadjiev, D. (2010). “Electrocoagolation electroflotation as a surface water treatment for industrial uses.” Separation and Purification Technology, 74(3), 342-347.

14. Sun, Y.P., Li, X.Q., Cao, J.S., Zhang, W.X., and Wang, H.P. (2006). “Characterization of zero-valent iron nanoparticles.” Advances in Colloid and Interface science, 120(1-3), 47-56.

15. Doong., R.A., and Lia, Y.A. (2006). “Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zero valent iron.” Chemosphere, 64 (3), 371-378.

16. Kassaee, M.Z., Notamedi, E., Mikhak, A., and Rahnamaie, R. (2009). “Nitrate removal from water using iron nanoparticles produced by arc discharge vs reduction.” Chemical Engineering Journal, 166 (2), 490-495.

17. Fang, Z., Qiu, X., Huang, R., Qiu., X., and Li, M. (2011). “Removal of chromium in electroplating wastewater by nanoscale zero-valent metal with synergistic effect of reduction and immobilization.” Desalination, 280 (1-3), 224-231.

18. Zhang, X., Lin, S., Chen, Z., Megharaj, M., and Naidu, R. (2011). “Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution reactivity, characterization and mechanism.” J. of Water Research, 45 (11), 3481-3488.

19. Boparai Hardiljeet, K., Joseph, M., and O'Carrol, D. (2011). “Kinetics and thermodynamics of cadmium ion removal by adsorption onto nanozerovaleny iron particles.” J. of Hazardous Material, 186 (1), 458-465. 

20. Zhu, H., Jia, Y., Wu, X., and Wang, H. (2009). “Removal of arsenic from water by supported nano zero-valent iron on activated carbon.” J. of Hazardous Material, 172 (2-3), 1591-1596.

21. Uzum, C., Shahwan, T., Eroglu, A.E., Hallam, K.R., Scott, T.B., and Lieberwirth, I. (2009). “Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and CO2+ ions.” Applied Clay Science, 43 (2), 172-181.

22. Ponder, S.M., Darab, J.G., and Mallouk Thomas, E. (2000). “Remediation of Cr(VI) and Pb(II) aquepus solutions using nanoscale zero-valent iron.” Environmental Science and Technology, 34 (12), 2564-2569.

23. Li, Q.X., Elliott, D.W., and Zhang, W.X. (2006). “Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects.” Solid State Material Science, 31(4), 111-122.

24. Alidokht, L., Khataee, A.R., Reyhanitabar, A., and Oustan, S. (2011). “Reductive removal of Cr(VI) by starch-stabilized Fe0 nanoparticles in aqueous solution.” Desalination, 270(1-3), 105-110.

25. Xu, Y.H., and Zhao, D.Y. (2007). “Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles.” Water Resource, 41(10), 2101-2108.

26. Li, Z.H., Jones, H.K., Zhang, P.F., and Bowman, R.S. (2007). “Chromate transport through column packed with surfactant-modified zeolite/zero valent iron pellets.” Chemosphere, 68(10), 1861-1866.

27. Tiraferri, A., Chen, K.L., Sethi, R., and Elimelech, M. (2008). “Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum.” J. of Colloids and Interface Science, 334 (1-2), 71-79.

28. Shahwan, T., Uzum, C., Eroglu, A.E., and Lieberwirth, I. (2010). “Synthesis and characterization of bentonite/iron nanoparticles and their application as adsorbent of cobalt ions.” Applied Clay Science, 47 (1-3), 257-262.

29. Raychoudhury, T., Naja, G., and Ghoshal, S. (2010). “Assessment of transport of two polyelectrolyte-stabilized zero-valent iron nanoparticles in porous media.” J. of Contaminant Hydrology, 118 (1-3), 143-151.

30. Schrick, B., Hydutsky, Biance, W., Blough. Jenniger, L., and Mallouk Thomas, E. (2004). “Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater.” Chemistry of Material, 16, 2187-2193.

31. Liu, Y.Q., Choil, H., Dionysiou, D., and Lowry, G.V. (2005). “Trichloroethenehydrodechlorination in water by highly disordered monometallic nanoiron.” Chemistry of Material, 17 (21), 5315-5322.

32. Zhang, X., Lin, S., Lu, X.Q., and Chen, Z.L. (2010). “Removal of Pb(II) from water using synthesized kaolin supported nanoscale zero-valent iron.” Chemical Engineering Journal, 163, 243-248.

33. Sotoodeh, O., Ahmadimoghadam, M., Mortazavi, M.S., and Aghaei, B. (2010). “Investigation efficiency of Zero-valent iron nanoparticles on lead removal from water.” Proc. Management and Novel Technologies in Health Science and Environment, Tehran, 1-9. (In Persian)

34. Donghee, P., Lim, S.R., Yun, Y.S., and Park, J.M. (2008). “Development of a new Cr(VI) biosorbent from agricultural biowaste.” Bioresource Technology, 99 (18), 8810-8818.

35. Ruangchainikom, C., Liao, C. H., Jin, A. T., and Lee, M. T. (2006). “Effects of water characteristics on nitrate reduction by the Fe-0/CO2 process.” Chemosphere, 63(2), 335-343.

36. Fang, Z., Qiu, X., Huang, R., Qiu, X., and Li, M. (2011). “Removal of chromium in electroplating wastewater by nanoscale zero-valent metal with synergistic effect of reduction and immobilization.” Desalination, 280(1-3), 224-231.

37. Saberi, A. (2012). “Comparison of Pb2+ removal efficiency by zero valent iron nanoparticles and Ni/Fe bimetallic nanoparticles.” Irannian J. of Energy and Environment, 3(2), 186-192.

38. Zhang, J., Hao, Z., Zhang, Z., Yang, Y., and Xu, X. (2010). “Kinetics of nitrate reductive denitrification by nanoscale.” Process Safety and Environmental Protection, 88, 439-445.

39. Alovitz, M.J., and Sherer, M.M. (2002). “Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal.” Enviromental Science and Technology, 36 (3), 299-306.

40. Choe, S., Chang, Y.Y., Hwang, K.Y., and Khim, J. (2000). “Kinetic of reductive denitrification by nanoscale zero-valent iron.” Chemosphere, 41 (8), 1307-1311.