حذف آلاینده رنگزای اسید رد 206 از آبهای آلوده به وسیله نانوفوتوکاتالیست Bentonite/ ZnFe2O4 در راکتور ناپیوسته با استفاده از طرح آزمایش تاگوچی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد شیمی کاربردی، دانشگاه آزاد اسلامی واحد ساوه، ساوه

2 کارشناس ارشد شیمی کاربردی، دانشگاه آزاد اسلامی واحد اراک، اراک

3 استادیار، دانشکده تحصیلات تکمیلی شیمی، دانشگاه آزاد اسلامی واحد ساوه، ساوه

چکیده

‌‌اسید رد 206 با فرمول شیمیایی C40H20CaN4O8S2 ، یک رنگ آزو با مصرف بالای جهانی است که در پساب صنایع نساجی به مقدار زیاد یافت می‌شود. در این تحقیق با استفاده از طرح آزمایش تاگوچی و نرم‌افزار Qualitek-4 واکنش تجزیه فوتوکاتالیستی اسید رد 206 در آبهای آلوده با استفاده از کاتالیستZnFe2O4/Bentonite  در حالت سوسپانسیون و تابش نور UVدر فوتوراکتور ناپیوسته انجام شد. برای شناسایی کاتالیست تهیه شده از تصاویر میکروسکوپ الکترونی و همچنین الگوی پراش اشعه ایکس استفاده گردید. واکنش از نظر سینتیکی در شرایط بهینه بررسی شد و نتایج نشان داد که سینتیک آن از درجه اول بوده است و نتایج قابل قبولی در این بررسی‌ها به‌دست آمد. تأثیر عوامل عملیاتی در تجزیه فوتوکاتالیستی نظیر pH، مقدار آب اکسیژنه، مقدار نانوفوتوکاتالیست و دمای واکنش مورد بررسی قرار گرفت و بیشترین راندمان در شرایط بهینه با pH برابر 5 ، مقدار آب اکسیژنه یک میلی‌لیتر، مقدار نانو فوتوکاتالیست ppm 75، و دما 293 درجه کلوین مشاهده گردید. بر اساس این نتایج روشی برای تجزیه فوتوکاتالیستی با استفاده از کاتالیست ZnFe2O4/Bentonite به‌دست آمد که می‌‌توان با گسترش آن به‌شکل صنعتی، برای تجزیه فاضلابهای رنگی در صنایع نساجی از آن استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Removal of Acid red 206 Dye in Pollutant Water by ZnFe2O4/Bentonite as a Nanophotocatalyst in Batch Reactor Using Taguachi Method

نویسندگان [English]

  • Raheleh Bayat Bid koopeh 1
  • Mohammad Ebrahimi 2
  • Bahram Keyvani 3
چکیده [English]

Acid Red206 (C40H20CaN4O8S2) is a textile dye with global usage which is found in sewage of textile manufacturing industries in large quantity. In this research the reaction of Acid Red206 (AR206) in photocatalytic analysis was carried out in water with use of Taguchi method, Qualitek-4 software and catalyst suspension ZnFe2O4/Bentonite and UV light radiation. To identify prepared catalyst, SEM image and XRD diffraction pattern were used. Based on Taguchi method the test results displayed the maximum photo catalytic activity. From kinetic view the reaction was first order and study of reaction rate was carried out with the use of first order kinetic equation and Acceptable results were gained in this consideration. The effect of factors in photo catalytic analysis such as pH, the amount of photo catalyst and hydrogen peroxide and temperature of reaction, were examined and the most efficiency in optimum conditions (pH=5, hydrogen peroxide=1ml, nonophotocatalyst=75ppm and temperature=293K) was observed. According to these results, a method was obtained for photo catalytic analysis with the use of ZnFe2O4/Bentonite catalyst and UV light radiation, which by its development in an industrial form; it can be used for analyzing the wastewater in loom or other industries.

کلیدواژه‌ها [English]

  • Acid Red 206
  • Nano Photo Catalyst
  • Zeolite
  • Taguchi method
1- Borker, P., and Salker, A.V. (2006). “Photocatalytic degradation of textile azo dye over Ce1-xSnxO2 series.” J. of Materials Science and Engineering, 133, 55-60.

2- Mahmoodi, N.M., Arami, M., Gharanjig, K., and Nourmohammadian, F. (2007). “Decolorization and mineralization of basic dye using nanophotocatalysis: Pilot scale study.” J. of Color Science and Technology, 1, 1-6. (In Persian)

3- Konstantinou, I.K., and Albanis, T.A. (2004). “TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations-A review.” J. of Appl. Catal. B: Environ., 49(1),
1-14.

4- Prado, A.G.S., Bolzon, L.B., Pedroso, C.P., Moura, A.O., and Costa, L.L. (2008). “Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation.” J. of Appl. Catal. B:Environ., 82, 219-224.

5- Mahmoodi, N.M., and Arami, M. (2006). “Bulk phase degradation of acid red 14 by anophotocatalysis using immobilized titanium (IV) oxide nanoparticles.” J. of Photochem. Photobiol. A: Chem., 182, 60-66.

6- Behnajady, M.A., Modirshahla, N., Daneshvar, N., and Rabbani, M. (2007). “Photocatalytic degradation of an azo dye in a tubular continuous-flow photoreactor with immobilized TiO2 on glass plates.” J. of Chem. Eng., 127, 167-176.

7- Saien, J., and Soleymani, A.R. (2007). “Degradation and mineralization of direct blue 71 in a circulating up flow reactor by UV/TiO2 process and employing a new method in kinetic study.” J. of Hazard. Mater., 144, 506-512.

8- Rahmani, A., and Enayati Movafagh, A. (2006). “Investigation of photocatalytic degradation of phenol through UV/TiO.” J. of Water and Wastewater, 58, 32-37. (In Persian)

9- Ghanbarian, M., Mahvi, A.H., Nabizadeh, R., and Saeedniya, S. (2009). “A pilot study of RO16 discoloration and mineralization in textile effluents using the nanophotocatalytic process.” J. of Water and Wastewater, 69, 45-51. (In Persian)

10- Tahir Asif, A. (2010). “Upul Wijayantha K.G., photoelectrochemical water splitting at nanostructured ZnFe2O4 electrodes.” J. of Photochemistry and Photobiology A: Chemistry, 216(2-3), 119-125.

11- Hashemian, S. (2007). “Study of adsorption of acid dye from aqueous solutions using bentonite.” J. of Main Group Chem., 6, 97-107.

12- Wu, R., and Qu, J. (2005). “Removal of water- soluble azo dye by the magnetic material MnFe2O4.” J. of Chem. Technol. Biotechnol., 80, 20-27.

13- Zhang, G., Qu, J., Liu, H., Cooper, A.T., and Wu, R. (2007). “CuFe2O4/activated carbon composite: A novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration.” J. of Chemosphere., 68, 1058-1066.

14- Mittal, A., Gajbe, V., and Mittal, J. (2008). “Removal and recovery of hazardous triphenylmethane dye and methyl violet through adsorption over granulated waste materials.” J. of Hazard. Mater., 15, 364-375.

15- Wang, R.C., Fan, K.S., and Chang, J.S. (2009). “Removal of acid dye by ZnFe2O4/TiO2-immobilized granular activated carbon under visible light irradiation in a recycle liquid-solid fluidized bed.” J. of the Taiwan Institute of Chemical Engineers, 40(5), 533-540.

16- Li, X., Hou, Y., Zhao, Q., Teng, W., Hu, X., and Chen, G. (2011). “Capability of novel ZnFe2O4 nanotube arrays for visible-light induced degradation of 4-chlorophenol.” J. of Chemosphere, 82(4), 581-586.

17- Jia, Z., Ren, D., Liang, Y., and Zhu, R. (2011). “A new strategy for the preparation of porous zinc ferrite nanorods with subsequently light-driven photocatalytic activity.” J. of Materials Letters, 65 (19-20), 3116-3119.

18- Srinivasan, S., Wade, S., Srinivasan, J., and Stefanakos, E.K. )2006(. “Synthesis and characterization of photocatalytic TiO2-ZnFe2O4 nanoparticles.” J. of Nanomat., 250, 1-4.

19- Yang, H., Zhang, X., Huang, C., Yang, W., and Qiu, G. (2004). “Synthesis of ZnFe2O4 nanocrystallites by mechanochemical reaction.” J. of Physics and Chemistry of Solids, 65, 1329-1332.

20- Taguchi, G. (1987). System of experimental design, Kraus International Publication, USA.

21- Taguchi, G., Chowdhury S., and Taguchi, S. (2000). Robust engineering, McGraw-Hill, New York.

22- Roy, R.K. (2001). Design of experiments using the Taguchi approach, John Wiley and Sons Inc., N.Y.