مروری بر جداسازی نانوذرات با روش شناورسازی کف

نوع مقاله : مقالات مروری

نویسندگان

استادیار، گروه مهندسی شیمی، دانشگاه تفرش، تفرش 79611-39518، ایران

چکیده

شناورسازی کف، یک روش مؤثر برای جداسازی ذرات جامد ریز از محلول‌های آبی بر اساس خواص سطحی است. مهم‌ترین پدیده این بحث، تشکیل یک تجمع جامد-حباب گاز است. انتخاب مناسب شرایط عملیاتی مانند اندازه، شکل، بار و آب‌گریزی نانوذرات، غلظت، pH محلول، دبی و سرعت گاز، اندازه حباب و معرف‌های شناورسازی مانند سورفکتانت‌ها برای آب‌گریز کردن ذرات به‌منظور افزایش جذب توسط حباب‌های گاز و جمع‌آوری آنها در کف ضروری است. در این پژوهش سعی شد تا پتانسیل و محدودیت‌های موجود برای فرایند شناورسازی نانوذرات و جداسازی آنها از محلول‌ها و یا به‌کارگیری نانوذرات به‌عنوان جمع‌کننده، تقویت‌کننده و تثبیت‌کننده کف شناورسازی بررسی شود و چالش‌های موجود و راهکارهای فائق آمدن بر آنها تبیین شوند. با توجه به پیشرفت‌های انجام شده در حوزه تجهیزات و معرف‌های استفاده شده، روش شناورسازی، روشی امیدوارکننده برای حذف، جداسازی، بازیابی و خالص‌سازی نانوذرات از محلول خواهد بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review on the Separation of Nanoparticles by Froth Flotation

نویسندگان [English]

  • Meisam Abdolkarimi-Mahabadi
  • Ahmad Bayat
Assist. Prof., Dept. of Chemical Engineering, Tafresh University, Tafresh 39518-79611, Iran
چکیده [English]

Froth flotation is an effective method for separating fine solid particles from aqueous solutions based on surface properties. The most important phenomenon in this issue is the formation of solid-gas bubble accumulation. Appropriate selection of operating conditions such as size, shape, charge and hydrophobicity of nanoparticles, concentration, pH solution, flow rate and gas velocity, bubble size and flotation reagents such as surfactants for hydrophobicizing particles is essential to increase absorption by gas bubbles and collect them in the froth. In this article, an attempt has been made to examine the potential and limitations of the process of flotation of nanoparticles and their separation from solutions, or the use of nanoparticles as collectors, reinforcements and stabilizers of the froth, and the existing challenges and solutions to overcome them should be explained. According to the progress made in the field of equipment and reagents used, the flotation method could be a promising method to remove, separate, recover and purify nanoparticles from the solution.

کلیدواژه‌ها [English]

  • Purification
  • Separation
  • Flotation
  • Surfactant
  • Nanoparticles
Abarca, C., Ali, M. M. & Pelton, R. H. 2018. Choosing mineral flotation collectors from large nanoparticle libraries. Journal of Colloid and Interface Science, 516, 423-430. https://doi.org/10.1016/j.jcis.2018.01.080.
Abdolkarimi-Mahabadi, M., Bayat, A. & Mohammadi, A. 2021. Use of UV-Vis spectrophotometry for characterization of carbon nanostructures: a review. Theoretical and Experimental Chemistry, 57, 191-198. https://doi.org/10.1007/s11237-021-09687-1.
Abdolkarimi-Mahabadi, M. & Manteghian, M. 2015a. Chemical oxidation of multi-walled carbon nanotube by sodium hypochlorite for production of graphene oxide nanosheets. Fullerenes, Nanotubes and Carbon Nanostructures, 23, 860-864. https://doi.org/10.1080/1536383X.2015.1016608.
Abdolkarimi-Mahabadi, M. & Manteghian, M. 2015b. Quantitative separation of graphene oxide nanoribbon by froth flotation. Journal of Dispersion Science and Technology, 36, 924-931. https://doi.org/10.1080/01932691.2014.941860.
Adamson, A. W. & Gast, A. P. 1967. Physical Chemistry of Surfaces. 6th Edition. A Wiley-Interscience Publication, John Wiley & Sons, Inc. New York.
Ahmadi, R., Khodadadi, D. A., Abdollahy, M. & Fan, M. 2014. Nano-microbubble flotation of fine and ultrafine chalcopyrite particles. International Journal of Mining Science and Technology, 24, 559-566. https://doi.org/10.1016/j.ijmst.2014.05.021.
Ahmadi, R., Khodadadi Darban, A. & Abdollahy, M. 2013. Flotation of chalcopyrite fine particles in the presence of hydrodynamic cavitation nanobybbles. Nashrieh Shimi va Mohandesi Shimi Iran, 32(4), 81-91. (In Persian)
Ahmadi, S., Mostafapour, F. K., Bazrafshan, E., Esfahani, Z. K. & Khorshid, A. R. 2017. Investigating the efficiency of dissolved air flotation process for aniline removal from aquatic environments. Journal of Water and Wastewater, 28(3), 64-73. (In Persian). https://doi.org/10.2093/wwj.2017.45362.
Ahmed, N. & Jameson, G. 1985. The effect of bubble size on the rate of flotation of fine particles. International Journal of Mineral Processing, 14, 195-215. https://doi.org/10.1016/0301-7516(85)90003-1.
An, M., Liao, Y., Gui, X., Zhao, Y., He, Y., Liu, Z., et al. 2020. An investigation of coal flotation using nanoparticles as a collector. International Journal of Coal Preparation and Utilization, 40, 679-690. https://doi.org/10.1080/19392699.2017.1402767.
Bai, L., Ma, X., Liu, J., Sun, X., Zhao, D. & Evans, D. G. 2010. Rapid separation and purification of nanoparticles in organic density gradients. Journal of the American Chemical Society, 132, 2333-2337. https://doi.org/10.1021/ja908971d.
Bleul, R., Thiermann, R. & Maskos, M. 2015. Techniques to control polymersome size. Macromolecules, 48, 7396-7409. https://doi.org/10.1021/acs.macromol.5b01500.
Chau, T., Bruckard, W., Koh, P. & Nguyen, A. 2009. A review of factors that affect contact angle and implications for flotation practice. Advances in Colloid and Interface Science, 150, 106-115. https://doi.org/10.1016/j.cis.2009.07.003.
Chen, S., Tao, X., Cheng, G., Zhu, X. & Gui, D. 2019. A novel method for measuring film thickness of oily bubbles and its effect on attachment time in oily-bubble flotation. Fuel, 241, 985-988. https://doi.org/10.1016/j.fuel.2018.12.114.
Cheng, G., Zhang, J., Su, H. & Zhang, Z. 2023. A novel collector for high-sulfur bauxite flotation desulfurization. Separation Science and Technology, 58, 86-100. https://doi.org/10.1080/01496395.2022.2103000.
Chipfunhu, D., Zanin, M. & Grano, S. 2011. The dependency of the critical contact angle for flotation on particle size–modelling the limits of fine particle flotation. Minerals Engineering, 24, 50-57. https://doi.org/10.1016/j.mineng.2010.09.020.
Cho, S. H., Kim, J. Y., Chun, J. H. & Kim, J. D. 2005. Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269, 28-34. https://doi.org/10.1016/j.colsurfa.2005.06.063.
Chungchamroenkit, P., Chavadej, S., Scamehorn, J. F., Yanatatsaneejit, U. & Kitiyanan, B. 2009. Separation of carbon black from silica by froth flotation part 1: effect of operational parameters. Separation Science and Technology, 44, 203-226. https://doi.org/10.1080/01496390802281968.
Chungchamroenkit, P., Chavadej, S., Yanatatsaneejit, U. & Kitiyanan, B. 2008. Residue catalyst support removal and purification of carbon nanotubes by NaOH leaching and froth flotation. Separation and Purification Technology, 60, 206-214. https://doi.org/10.1016/j.seppur.2007.08.009.
Chungchamroenkit, P., Yanatatsaneejit, U., Kitiyanan, B., Chavadej, S., Scamehorn, J. F. & Resasco, D. E. 2004. Separation of carbon black from silica by froth flotation technique as an approach for single-walled carbon nanotubes purification. In Asian Pacific Confederation of Chemical Engineering Congress Program and Abstracts. 766. The Society of Chemical Engineers, Japan. https://doi.org/10.11491/apcche.2004.0.766.0.
Cilek, E. C. & Karaca, S. 2015. Effect of nanoparticles on froth stability and bubble size distribution in flotation. International Journal of Mineral Processing, 138, 6-14. https://doi.org/10.1016/j.minpro.2015.03.004.
Cilek, E. C. & Uysal, K. 2018. Froth stabilisation using nanoparticles in mineral flotation. Physicochemical Problems of Mineral Processing, 54. https://doi.org/10.5277/ppmp1889.
Crawford, C. B. & Quinn, B. 2017. Microplastic Separation Techniques. In: Crawford, C. B. & Quinn, B. Microplastic Pollutants, Ch. 9. 203-218. Elsevier. https://doi.org/10.1016/B978-0-12-809406-8.00009-8.
Crawford, R. & Ralston, J. 1988. The influence of particle size and contact angle in mineral flotation. International Journal of Mineral Processing, 23, 1-24. https://doi.org/10.1016/0301-7516(88)90002-6.
Dai, Z., Fornasiero, D. & Ralston, J. 2000. Particle–bubble collision models-a review. Advances in Colloid and Interface Science, 85, 231-256. https://doi.org/10.1016/S0001-8686(99)00030-5.
Dickinson, E., Ettelaie, R., Kostakis, T. & Murray, B. S. 2004. Factors controlling the formation and stability of air bubbles stabilized by partially hydrophobic silica nanoparticles. Langmuir, 20, 8517-8525. https://doi.org/10.1021/la048913k.
Dong, X. 2017. Soft nanoparticle flotation collectors. PhD. Thesis. McMaster University, Hamilton, Canada.
Drelich, J. & Miller, J. D. 1992. The effect of surface heterogeneity on pseudo-line tension and the flotation limit of fine particles. Colloids and Surfaces, 69, 35-43. https://doi.org/10.1016/0166-6622(92)80236-U.
Du, Z., Bilbao-Montoya, M. P., Binks, B. P., Dickinson, E., Ettelaie, R. & Murray, B. S. 2003. Outstanding stability of particle-stabilized bubbles. Langmuir, 19, 3106-3108. https://doi.org/10.1021/la034042n.
Duan, J., Fornasiero, D. & Ralston, J. 2003. Calculation of the flotation rate constant of chalcopyrite particles in an ore. International Journal of Mineral Processing, 72, 227-237. https://doi.org/10.1016/S0301 7516(03)00101-7.
Etchepare, R., Azevedo, A., Calgaroto, S. & Rubio, J. 2017. Removal of ferric hydroxide by flotation with micro and nanobubbles. Separation and Purification Technology, 184, 347-353. https://doi.org/10.1016/j.seppur.2017.05.014.
Farrokhpay, S. 2011. The significance of froth stability in mineral flotation-a review. Advances in Colloid and Interface Science, 166, 1-7. https://doi.org/10.1016/j.cis.2011.03.001.
Fuerstenau, M., Jameson, G. & Yoon, R. 2007. Froth Flotation–a Century of Innovation, SME. Sci-Tech Book News. Portland, USA.
Gennes, P. G., Brochard-Wyart, F. & Quéré, D. 2004. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer. New York, USA.
George, P., Nguyen, A. & Jameson, G. 2004. Assessment of true flotation and entrainment in the flotation of submicron particles by fine bubbles. Minerals Engineering, 17, 847-853. https://doi.org/10.1016/j.mineng.2004.02.002.
Gupta, A. K., Banerjee, P., Mishra, A. & Satish, P. 2007. Effect of alcohol and polyglycol ether frothers on foam stability, bubble size and coal flotation. International Journal of Mineral Processing, 82, 126-137. https://doi.org/10.1016/j.minpro.2006.09.002.
Hajati, A., Shafaei, S., Noaparast, M., Farrokhpay, S. & Aslani, S. 2016. Novel application of talc nanoparticles as collector in flotation. RSC Advances, 6, 98096-98103. https://doi.org/10.1039/C6RA19276A.
Hajati, A., Shafaei, Z., Noaparast, M., Farrokhpay, S. & Aslani, S. 2019. Investigating the effects of particle size and dosage of talc nanoparticles as a novel solid collector in quartz flotation. International Journal of Mining and Geo-Engineering, 53, 1-6. http://doi.org/ 10.22059/Ijmge.2018.245520.594705.
Hassanjani-Roshan, A., Emadoddin, E., Vaezi, M. R. & Koohestani, H. 2023. Evaluation of the performance of polystyrene nanoparticles as a collector for removal of silica from Iron Ore by reverse flotation. JOM, 75, 1270-1277. https://doi.org/10.1007/s11837-022-05673-7.
Henderson, R. K., Parsons, S. A. & Jefferson, B. 2009. The potential for using bubble modification chemicals in dissolved air flotation for algae removal. Separation Science and Technology, 44, 1923-1940. https://doi.org/10.1080/01496390902955628.
Hewitt, D., Fornasiero, D. & Ralston, J. 1995. Bubble–particle attachment. Journal of the Chemical Society, Faraday Transactions, 91, 1997-2001. https://doi.org/10.1039/FT9959101997.
Hu, N., Chen, L., Li, Y., Yao, N., Li, H. & Zhang, Z. 2023. Foam fractionation of rosmarinic acid from perilla leaves using surface-modified Al2O3 nanoparticle as frother and collector. Industrial Crops and Products, 197, 116633. https://doi.org/10.1016/j.indcrop.2023.116633.
Hu, N., Li, R., Wu, Z. L., Huang, D. & Li, H. Z. 2015. Intensification of the separation of CuO nanoparticles from their highly diluted suspension using a foam flotation column with S type internal. Journal of Nanoparticle Research, 17, 1-11. https://doi.org/10.1007/s11051-015-3205-0.
Huang, Z., Legendre, D. & Guiraud, P. 2011. A new experimental method for determining particle capture efficiency in flotation. Chemical Engineering Science, 66, 982-997. https://doi.org/10.1016/j.ces.2010.12.006.
Jiang, K., Liu, J., Wang, Y., Zhang, D. & Han, Y. 2023. Surface properties and flotation inhibition mechanism of air oxidation on pyrite and arsenopyrite. Applied Surface Science, 610, 155476. https://doi.org/10.1016/j.apsusc.2022.155476.
Khaleghi, A., Ghader, S. & Afzali, D. 2014. Ag recovery from copper anode slime by acid leaching at atmospheric pressure to synthesize silver nanoparticles. International Journal of Mining Science and Technology, 24, 251-257. https://doi.org/10.1016/j.ijmst.2014.01.018.
Khodakarami, M., Molatlhegi, O. & Alagha, L. 2019. Evaluation of ash and coal response to hybrid polymeric nanoparticles in flotation process: data analysis using self-learning neural network. International Journal of Coal Preparation and Utilization, 39, 199-218. https://doi.org/10.1080/19392699.2017.1308927.
Kim, H., You, J., Gomez-Flores, A., Solongo, S. K., Hwang, G., Zhao, H., et al. 2019. Malachite flotation using carbon black nanoparticles as collectors: negative impact of suspended nanoparticle aggregates. Minerals Engineering, 137, 19-26. https://doi.org/10.1016/j.mineng.2019.03.025.
Legawiec, K. J. & Polowczyk, I. 2020. Evolution of ideas towards the implementation of nanoparticles as flotation reagents. Physicochemical Problems of Mineral Processing, 56. https://doi.org/10.37190/ppmp/130269.
Li, C. & Somasundaran, P. 1991. Reversal of bubble charge in multivalent inorganic salt solutions-effect of magnesium. Journal of Colloid and Interface Science, 146, 215-218. https://doi.org/10.1016/0021-9797(91)90018-4.
Li, C. & Somasundaran, P. 1992. Reversal of bubble charge in multivalent inorganic salt solutions-effect of aluminum. Journal of Colloid and Interface Science, 148, 587-591. https://doi.org/10.1016/0021-9797(92)90193-P.
Li, C. & Somasundaran, P. 1993. Reversal of bubble charge in multivalent inorganic salt solutions-effect of lanthanum. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 81, 13-15. https://doi.org/10.1016/0927-7757(93)80230-C.
Lien, C. & Liu, J. 2006. Treatment of polishing wastewater from semiconductor manufacturer by dispersed air flotation. Journal of Environmental Engineering, 132, 51-57. https://doi.org/10.1061/(ASCE)0733-9372(2006)132:1(51).
Liu, Y., Tourbin, M., Lachaize, S. & Guiraud, P. 2012. Silica nanoparticle separation from water by aggregation with AlCl3. Industrial and Engineering Chemistry Research, 51, 1853-1863. https://doi.org/10.1021/ie200672t.
Liu, Y., Tourbin, M., Lachaize, S. & Guiraud, P. 2013. Silica nanoparticles separation from water: aggregation by cetyltrimethylammonium bromide (CTAB). Chemosphere, 92, 681-687. https://doi.org/10.1016/j.chemosphere.2013.03.048.
Long, Q., Wang, H., Wang, X., Jiang, F., Zhang, J., Zou, L., et al. 2023. A novel switchable collector for selective flotation of fine copper oxide from silica. Minerals Engineering, 199, 108104. https://doi.org/10.1016/j.mineng.2023.108104.
Madzokere, T. C., Rusere, K. & Chiririwa, H. 2021. Nano-silica based mineral flotation frother: synthesis and flotation of platinum group metals (PGMs). Minerals Engineering, 166, 106881. https://doi.org/10.1016/j.mineng.2021.106881.
Mekuye, B. & Abera, B. 2023. Nanomaterials: an overview of synthesis, classification, characterization, and applications. Nano Select, 4(8), 486-501. https://doi.org/10.1002/nano.202300038.
Miettinen, T., Ralston, J. & Fornasiero, D. 2010. The limits of fine particle flotation. Minerals Engineering, 23, 420-437. https://doi.org/10.1016/j.mineng.2009.12.006.
Mishchuk, N., Ralston, J. & Fornasiero, D. 2012. The analytical model of nanoparticle recovery by microflotation. Advances in Colloid and Interface Science, 179, 114-122. https://doi.org/10.1016/j.cis.2012.06.008.
Murga, R., Rodriguez, C., Amalraj, J., Vega-Garcia, D., Gutierrez, L. & Uribe, L. 2022. Use of polystyrene nanoparticles as collectors in the flotation of chalcopyrite. Polymers, 14, 5259. https://doi.org/10.3390/polym14235259.
Nakhaei, F., Mosavi, M. & Sam, A. 2013. Recovery and grade prediction of pilot plant flotation column concentrate by a hybrid neural genetic algorithm. International Journal of Mining Science and Technology, 23, 69-77. https://doi.org/10.1016/j.ijmst.2013.01.011.
Nasirimoghaddam, S., Mohebbi, A., Karimi, M. & Yarahmadi, M. R. 2020. Assessment of pH-responsive nanoparticles performance on laboratory column flotation cell applying a real ore feed. International Journal of Mining Science and Technology, 30, 197-205. https://doi.org/10.1016/j.ijmst.2020.01.001.
Nazari, M. & Ayati, B. 2018. Investigation of anionic surfactant removal using unipolar electro-flotation and electro-coagulation. Journal of Water and Wastewater, 29(3), 54-65. (In Persian). https://doi.org/10.22093/wwj.2017.72005.2316.
Neisiani, A. A., Saneie, R., Mohammadzadeh, A., Wonyen, D. & Chelgani, S. C. 2023. Biodegradable hematite depressants for green flotation separation-an overview. Minerals Engineering, 199, 108114. https://doi.org/10.1016/j.mineng.2023.108114.
Nguyen-Van, A. 1994. The collision between fine particles and single air bubbles in flotation. Journal of Colloid and Interface Science, 162, 123-128. https://doi.org/10.1006/jcis.1994.1016.
Nguyen-Van, A. & Kmeť, S. 1994. Probability of collision between particles and bubbles in flotation: the theoretical inertialess model involving a swarm of bubbles in pulp phase. International Journal of Mineral Processing, 40, 155-169. https://doi.org/10.1016/0301-7516(94)90041-8.
Nguyen, A. V., George, P. & Jameson, G. J. 2006. Demonstration of a minimum in the recovery of nanoparticles by flotation: theory and experiment. Chemical Engineering Science, 61, 2494-2509. https://doi.org/10.1016/j.ces.2005.11.025.
Oliveira, H. A., Azevedo, A. & Rubio, J. 2021. Removal of flocculated TiO2 nanoparticles by settling or dissolved air flotation. Environmental Technology, 42, 1001-1012. https://doi.org/10.1080/09593330.2019.1650123.
Olszok, V., Rivas-Botero, J., Wollmann, A., Benker, B. & Weber, A. P. 2020. Particle-induced nanobubble generation for material-selective nanoparticle flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 592, 124576. https://doi.org/10.1016/j.colsurfa.2020.124576.
Owusu, C., Quast, K. & Addai-Mensah, J. 2016. The use of canola oil as an environmentally friendly flotation collector in sulphide mineral processing. Minerals Engineering, 98, 127-136. https://doi.org/10.1016/j.mineng.2016.08.003.
Padervand, M. 2021. Reusable porous Na (SiAl) O6. xH2O/NiFe2O4 structure for selective removal of heavy metals from waste waters. Google Patents, US11014082B2.
Padervand, M., Asgarpour, F., Akbari, A., Eftekhari Sis, B. & Lammel, G. 2019. Hexagonal core–shell SiO2
[–MOYI] Cl–] Ag nanoframeworks for efficient photodegradation of the environmental pollutants and pathogenic bacteria. Journal of Inorganic and Organometallic Polymers and Materials, 29, 1314-1323. https://doi.org/10.1007/s10904-019-01095-2.
Padervand, M., Ghasemi, S., Hajiahmadi, S., Rhimi, B., Nejad, Z. G., Karima, S., et al. 2022a. Multifunctional Ag/AgCl/ZnTiO3 structures as highly efficient photocatalysts for the removal of nitrophenols, CO2 photoreduction, biomedical waste treatment, and bacteria inactivation. Applied Catalysis A: General, 643, 118794. https://doi.org/10.1016/j.apcata.2022.118794.
Padervand, M., Nasiri, F., Hajiahmadi, S., Bargahi, A., Esmaeili, S., Amini, M., et al. 2022b. Ag@ Ag2MoO4 decorated polyoxomolybdate/C3N4 nanostructures as highly efficient photocatalysts for the wastewater treatment and cancer cells killing under visible light. Inorganic Chemistry Communications, 141, 109500. https://doi.org/10.1016/j.inoche.2022.109500.
Pan, G., Zou, D. & Wang, Z. 2021. Flotation of smithsonite from Quartz using pyrophyllite nanoparticles as the natural non-toxic collector. Frontiers in Chemistry, 9, 743482. https://doi.org/10.3389/fchem.2021.743482.
Pornsunthorntawee, O., Chuaybumrung, S., Kitiyanan, B. & Chavadej, S. 2011. Purification of single-walled carbon nanotubes (SWNTs) by acid leaching, NaOH dissolution, and froth flotation. Separation Science and Technology, 46, 2056-2065. https://doi.org/10.1080/01496395.2011.585626.
Pyke, B., Fornasiero, D. & Ralston, J. 2003. Bubble particle heterocoagulation under turbulent conditions. Journal of Colloid and Interface Science, 265, 141-151. https://doi.org/10.1016/S0021-9797(03)00345-X.
Ralston, J., Fornasiero, D. & Hayes, R. 1999. Bubble–particle attachment and detachment in flotation. International Journal of Mineral Processing, 56, 133-164. https://doi.org/10.1016/S0301-7516(98)00046-5.
Ralston, J., Fornasiero, D. & Mishchuk, N. 2001. The hydrophobic force in flotation-a critique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 192, 39-51. https://doi.org/10.1016/S0927-7757(01)00715-4.
Ramin, N. A., Ramachandran, M. R., Saleh, N. M., Mat Ali, Z. M. & Asman, S. 2023. Magnetic nanoparticles molecularly imprinted polymers: a review. Current Nanoscience, 19, 372-400. https://doi.org/10.2174/1573413718666220727111319.
Reay, D. 1973. Removal of fine particles from water by dispersed air flotation. PhD. Thesis, McGill University, Montreal, Canada.
Shen, Y. H. 1998. Colloidal titanium dioxide separation from water by foam flotation. Separation Science and Technology, 33(16), 2623-2635. https://doi.org/10.1080/01496399808545323.
Sirota, V., Selemenev, V., Kovaleva, M., Pavlenko, I., Mamunin, K., Dokalov, V., et al. 2018. Preparation of crystalline Mg(OH)2 nanopowder from serpentinite mineral. International Journal of Mining Science and Technology, 28, 499-503. https://doi.org/10.1016/j.ijmst.2017.12.018.
Trahar, W. 1981. A rational interpretation of the role of particle size in flotation. International Journal of Mineral Processing, 8, 289-327. https://doi.org/10.1016/0301-7516(81)90019-3.
Trahar, W. & Warren, L. 1976. The flotability of very fine particles-a review. International Journal of Mineral Processing, 3, 103-131. https://doi.org/10.1016/0301-7516(76)90029-6.
Tsai, J. C., Kumar, M., Chen, S. Y. & Lin, J. G. 2007. Nano-bubble flotation technology with coagulation process for the cost-effective treatment of chemical mechanical polishing wastewater. Separation and Purification Technology, 58, 61-67. https://doi.org/10.1016/j.seppur.2007.07.022.
Wang, A., Evans, G. & Mitra, S. 2023. A review of bubble surface loading and its effect on bubble dynamics. Minerals Engineering, 199, 108105. https://doi.org/10.1016/j.mineng.2023.108105.
Wark, I. W. 2002. The physical chemistry of flotation. I. The significance of contact angle in flotation. The Journal of Physical Chemistry, 37, 623-644. https://doi.org/10.1021/j150347a008.
Wen, L. H., Ismail, A. B., Menon, P., Saththasivam, J., Thu, K. & Choon, N. K. 2011. Case studies of microbubbles in wastewater treatment. Desalination and Water Treatment, 30, 10-16. https://doi.org/10.5004/dwt.2011.1217.
Yang, S. & Pelton, R. 2011. Nanoparticle flotation collectors II: the role of nanoparticle hydrophobicity. Langmuir, 27, 11409-11415. https://doi.org/10.1021/la2016534.
Yang, S., Pelton, R., Montgomery, M. & Cui, Y. 2012. Nanoparticle flotation collectors III: the role of nanoparticle diameter. ACS Applied Materials and Interfaces, 4, 4882-4890. https://doi.org/10.1021/am301215h.
Yang, S., Pelton, R., Raegen, A., Montgomery, M. & Dalnoki-Veress, K. 2011. Nanoparticle flotation collectors: mechanisms behind a new technology. Langmuir, 27, 10438-10446. https://doi.org/10.1021/la2016534.
Yang, S., Razavizadeh, B. B. M., Pelton, R. & Bruin, G. 2013. Nanoparticle flotation collectors. The influence of particle softness. ACS Applied Materials and Interfaces, 5, 4836-4842. https://doi.org/10.1021/am4008825.
Yap, R. K., Whittaker, M., Diao, M., Stuetz, R. M., Jefferson, B., Bulmus, V., et al. 2014. Hydrophobically-associating cationic polymers as micro-bubble surface modifiers in dissolved air flotation for cyanobacteria cell separation. Water Research, 61, 253-262. https://doi.org/10.1016/j.watres.2014.05.032.
Zanin, M., Wightman, E., Grano, S. & Franzidis, J. P. 2009. Quantifying contributions to froth stability in porphyry copper plants. International Journal of Mineral Processing, 91, 19-27. https://doi.org/10.1016/j.minpro.2008.11.003.
Zhang, M. & Guiraud, P. 2013. Elimination of TiO2 nanoparticles with the assist of humic acid: influence of agglomeration in the dissolved air flotation process. Journal of Hazardous Materials, 260, 122-130. https://doi.org/10.1016/j.jhazmat.2013.05.002.
Zhang, M. & Seddon, J. R. 2016. Nanobubble–nanoparticle interactions in bulk solutions. Langmuir, 32, 11280-11286. https://doi.org/10.1021/acs.langmuir.6b02419.
Zhang, M., Trompette, J. L. & Guiraud, P. 2017. Role of humic acid in enhancing dissolved air flotation for the removal of TiO2 nanoparticles. Industrial and Engineering Chemistry Research, 56, 2212-2220. https://doi.org/10.1021/acs.iecr.6b04572.