A Survey on Sludge Granulation under Aerobic Conditions

Document Type : Research Paper



The sludge biogranulation technology, including the two aerobic and anaerobic processes, is an important development in the field of wastewater treatment. Much is know about the process and operation of the anaerobic granulation thanks to the rather large number of studies carried out. Aerobic granulation, however, has been only recently investigated and a limited number of studies have been dedicated to such aspects of the process as the organic source, hydrodynamic shear stress, cycle, settling time, reactor configuration, solid retention time, oxygen concentration, metallic concentration, and pH. This article tries to provide a brief review of these studies and the results obtained in an attempt to identify the most important study so far conducted. Using the results, a comparison will also be made between the anaerobic and aerobic granulation processes to gain a better understanding of both.


Main Subjects

1. Qin, L., and Liu, Y. (2006). “Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic–anaerobic sequencing batch reactor.” Chemosphere, 63(6), 926-933.
2. Jiang, H. L., Tay, J. H., and Tay, S. T. (2002). “Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol.” Letters in Applied Microbiology, 35(5), 439-445.
3. Liu, L., Wang, Z., Yao, J., Sun, X., and Cai, W. (2005). “Investigation on the properties and kinetics of glucose-fed aerobic granular sludge.” Enzyme and Microbial Technology, 36(2-3), 307-313.
4. Liu, Y. (2006). Wastewater purification : Aerobic granulation in sequencing batch reactors, CRC Press, Boca Raton.
5. Mehdizadeh, H. J. S. (2003). “The effect of sulfate concentration on COD removal and sludge granulation in UASB reactors.” International Journal of Engineering, 16, 1-10.
6. Shayegan, J., Ghavipanjeh, F., and Mirjafari, P. (2005). “The effect of influent COD and upward flow velocity on the behavior of sulphate-reducing bacteria.” Process Biochemistry, 40, 2305-2310.
7. Gao, D., Liu, L., Liang, H., and Wu, W. M. (2011). “Aerobic granular sludge: characterization, mechanism of granulation and application to wastewater treatment.” Crit. Rev. Biotechnol, 31(2), 137-152.
8. Shayegan, J., Yousefnejad, M. S., and Hemati, A. (2010). “A survey of sludge granulation theories under anaerobic conditions.” J. of Water and Wastewater,76, 44-53. (In Persian)
9. Beun, J. J., Hendriks, A., van Loosdrecht, M. C. M., Morgenroth, E., Wilderer, P. A., and Heijnen, J. J. (1999). “Aerobic granulation in a sequencing batch reactor.” Water Research, 33(10), 2283-2290.
10. Wang, S.-G., Liu, X.-W., Zhang, H.-Y., Gong, W.-X., Sun, X.-F., and Gao, B.-Y. (2007). “Aerobic granulation for 2,4-dichlorophenol biodegradation in a sequencing batch reactor.” Chemosphere, 69(5), 769-775.
11. Zheng, Y. M., Yu, H. Q., Liu, S. J., and Liu, X. Z. (2006). “Formation and instability of aerobic granules under high organic loading conditions.” Chemosphere, 63(10), 1791-1800.
12. Muda, K., Aris, A., Salim, M. R., Ibrahim, Z., Yahya, A., van Loosdrecht, M. C. M., Ahmad, A., and Nawahwi, M. Z. (2010). “Development of granular sludge for textile wastewater treatment.” Water Research, 44(15), 4341-4350.
13. Wagner, J., and da Costa, R. (2013). “Aerobic granulation in a sequencing batch reactor using real domestic wastewater.” J. of Environmental Engineering, 139(11), 1391-1396.
14. Tay, J. H., Liu, Q. S., and Liu, Y. (2001). “Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor.” J. of Applied Microbiology, 91(1), 168-175.
15. Wang, S.-G., Liu, X.-W., Gong, W.-X., Gao, B.-Y., Zhang, D.-H., and Yu, H.-Q. (2007). “Aerobic granulation with brewery wastewater in a sequencing batch reactor.” Bioresource Technology, 98(11), 2142-2147.
16. Ma, D.-Y., Wang, X.-H., Song, C., Wang, S.-G., Fan, M.-H., and Li, X.-M. (2011). “Aerobic granulation for methylene blue biodegradation in a sequencing batch reactor.” Desalination, 276(1-3), 233-238.
17. Morales, N., Figueroa, M., Fra-Vázquez, A., Val del Río, A., Campos, J. L., Mosquera-Corral, A., and Méndez, R. (2013). “Operation of an aerobic granular pilot scale SBR plant to treat swine slurry.” Process Biochemistry, 48(8), 1216-1221.
18. Rosman, N. H., Nor Anuar, A., Othman, I., Harun, H., Sulong, M. Z., Elias, S. H., Mat Hassan, M. A. H., Chelliapan, S., and Ujang, Z. (2013). “Cultivation of aerobic granular sludge for rubber wastewater treatment.” Bioresource Technology, 129(0), 620-623.
19. Hailei, W., Guangli, Y., Guosheng, L., and Feng, P. (2006). “A new way to cultivate aerobic granules in the process of papermaking wastewater treatment.” Biochemical Engineering Journal, 28(1), 99-103.
20. Amorim, C. L., Maia, A. S., Mesquita, R. B. R., Rangel, A. O. S. S., van Loosdrecht, M. C. M., Tiritan, M. E., and Castro, P. M. L. (2011). “Performance of aerobic granular sludge in a sequencing batch bioreactor exposed to ofloxacin, norfloxacin and ciprofloxacin.” Water Research , 5, 101-113.
21. Duque, A. F., Bessa, V. S., Carvalho, M. F., de Kreuk, M. K., van Loosdrecht, M. C. M., and Castro, P. M. L. (2011). “2-Fluorophenol degradation by aerobic granular sludge in a sequencing batch reactor.” Water Research, 45(20), 6745-6752.
22. Li , A.-J., Li, X.-Y., and Yu, H.-Q. (2011). “Effect of the food-to-microorganism (F/M) ratio on the formation and size of aerobic sludge granules.” Process  Biochemistry, 46, 11.
23. Tay, J., Pan, S., He, Y., and Tay, S. (2004). “Effect of organic loading rate on aerobic granulation. II: characteristics of aerobic granules.” J. of Environmental Engineering, 130(10), 1102-1109.
24. Yang, S., Tay, J., and Liu, Y. (2005). “Effect of substrate nitrogen/chemical oxygen demand ratio on the formation of aerobic granules.” J. of Environmental Engineering, 131(1), 86-92.
25. Lin, Y. M., Liu, Y., and Tay, J. H. (2003). “Development and characteristics of phosphorus-accumulating microbial granules in sequencing batch reactors.” Appl. Microbiol. Biotechnol., 62(4), 430-435.
26. Tay, J. H., Liu, Q. S., and Liu, Y. (2001). “The effects of shear force on the formation, structure and metabolism of aerobic granules.” Appl. Microbiol. Biotechnol., 57(1-2), 227-233.
27. Pan, S., Tay, J. H., He, Y. X., and Tay, S. T. (2004). “The effect of hydraulic retention time on the stability of aerobically grown microbial granules.” Letters in Applied Microbiology, 38(2), 158-163.
28. Qin, L., Liu, Y., and Tay, J.-H. (2004). “Effect of settling time on aerobic granulation in sequencing batch reactor.” Biochemical Engineering Journal, 21(1), 47-52.
29. Wang, Z.-W., Li, Y., Zhou, J.-Q., and Liu, Y. (2006). “The influence of short-term starvation on aerobic granules.” Process Biochemistry, 41(12), 2373-2378.
30. Jiaheng, Z., Su, W., Jun, L., Mei, H., Hille, A., and Horn, H. (2011). “Aerobic granulation in a modified continuous flow system.” Proc. Bioinformatics and Biomedical Engineering, (iCBBE) 5th International Conference , IEEE, Wuhan, 1-5.
31. Kishida, Y., Yamashita, A. K., and Tsuneda, S. (2010). “Formation of aerobic granular Sludge in a continuous-flow reactor –  control strategy for the selection of well-settling granular sludge.” J. of Water and Environment Technology, 8, 251-258.
32. Wang, Z. W., Liu, Y., and Tay, J. H. (2006). “The role of SBR mixed liquor volume exchange ratio in aerobic granulation.” Chemosphere, 62(5), 767-771.
33. Dangcong, P., Bernet, N., Delgenes, J. P., and Moletta, R. (1999). “Aerobic granular sludge-a case report.” Water Research, 33(3), 890-893.
34. Li, X.-M., Liu, Q.-Q., Yang, Q., Guo, L., Zeng, G.-M., Hu, J.-M., and Zheng, W. (2009). “Enhanced aerobic sludge granulation in sequencing batch reactor by Mg2+ augmentation.” Bioresource Technology, 100(1), 64-67.
35. Costerton, J. W. (1999). “The role of bacterial exopolysaccharides in nature and disease, (Volume 26).” J. Ind Microbiol. Biotech., 22(4-5), 551-563.
36. Wang, Z., Liu, L., Yao, J., and Cai, W. (2006). “Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors.” Chemosphere, 63(10), 1728-1735.
37. de Kreuk, M. K., Pronk, M., and van Loosdrecht, M. C. (2005). “Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperatures.” Water Res, 39(18), 4476-4484.
38. Yang, S. F., Li, X. Y., and Yu, H. Q. (2008). “Formation and characterisation of fungal and bacterial granules under different feeding alkalinity and pH conditions.” Process Biochemistry, 43(1), 8-14.
39. Shayegan, J., Hemmati, A., and Yousefnejad, M. S. (2010). “Factors involved in sludge granulation under anaerobic conditions.” J. of Water and Wastewater, 77, 68-75. (In Persian)
40. Liu, Q. S., Tay, J. H., and Liu, Y. (2003). “Substrate concentrationā€independent aerobic granulation in sequential aerobic sludge blanket reactor.” Environmental Technology, 24(10), 1235-1242.
41. Wang, D., Zheng, G., Wang, S., Zhang, D., and Zhou, L. (2011). “Biodegradation of aniline by Candida tropicalis AN1 isolated from aerobic granular sludge.” J. of Environmental Sciences, 23(12), 2063-2068.
42. Liu, Y., Xu, H.-L., Yang, S.-F., and Tay, J.-H. (2003). “Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor.” Water Research, 37(3), 661-673.
43. Tay, J. H., Ivanov, V., Pan, S., and Tay, S. T. (2002). “Specific layers in aerobically grown microbial granules.” Letters in Applied Microbiology, 34(4), 254-257.