Overview of Different Architectures of Capacitive Deionization Cells and Comparison of their Performance in Water Desalination

Document Type : Review


1 MSc. Student, Green Carbon Research Center, Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran

2 Assist. Prof., Green Carbon Research Center, Chemical Engineering Faculty, Sahand University of Technology, Tabriz, Iran


Considering the necessity of access to fresh water for sustainable growth and development, the use of various technologies for desalination of salt water is one of the solutions to increase access to fresh water. Various problems of conventional water desalination methods have led to the emergence of new methods such as capacitive deionization technology. CDI technology is an emerging electrochemical adsorption technology to remove water-soluble ions. In recent years, the development of this technology has attracted the attention of many researchers from the functional and economic point of view. Recent research results show that to overcome the challenges of CDI technology, focusing on two areas of effective porous electrodes and applied architectures can be more effective than other solutions. Therefore, this article provides a brief overview of CDI technology and investigates its emergence, progress, and challenges. Furthermore, various types of structures with capacitive electrodes have been introduced along with their unique features, drawbacks, and advantages. Also, this article describes in detail the quantitative and qualitative performance comparison of different geometries of CDI technology, such as flow-by CDI, flow-through CDI, MCDI, FCDI and i-CDI. The results show that, currently, CDI technology using nanostructured carbon electrodes is economical for the deionization of low and medium salinity waters (3 g/L). Despite numerous challenges, capacitive deionization technology has the potential to provide a sustainable source of fresh water in the future. This technology offers a clean and environmentally friendly solution, with low energy consumption and economical operation.


Al-Karaghouli, A. & Kazmerski, L. L. 2013. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renewable and Sustainable Energy Reviews, 24, 343-356. https://doi.org/10.1016/j.rser.2012.12.064.
Almarzooqi, F. A., Al Ghaferi, A. A., Saadat, I. & Hilal, N. 2014. Application of capacitive deionisation in water desalination: a review. Desalination, 342, 3-15. https://doi.org/10.1016/j.desal.2014.02.031.
Amy, G., Ghaffour, N., Li, Z., Francis, L., Linares, R. V., Missimer, T., et al. 2017. Membrane-based seawater desalination: present and future prospects. Desalination, 401, 16-21. https://doi.org/10.1016/j.desal.2016.10.002.
Bhat, A. P., Reale, E. R., Del Cerro, M., Smith, K. C. & Cusick, R. D. 2019. Reducing impedance to ionic flux in capacitive deionization with Bi-tortuous activated carbon electrodes coated with asymmetrically charged polyelectrolytes. Water Research X, 3, 100027. https://doi.org/10.1016/j.wroa.2019.100027.
Busch, M. & Mickols, W. 2004. Reducing energy consumption in seawater desalination. Desalination, 165, 299-312. https://doi.org/10.1016/j.desal.2004.06.035.
Cao, J., Wang, Y., Chen, C., Yu, F. & Ma, J. 2018. A comparison of graphene hydrogels modified with single-walled/multi-walled carbon nanotubes as electrode materials for capacitive deionization. Journal of Colloid and Interface Science, 518, 69-75. https://doi.org/10.1016/j.jcis.2018.02.019.
Choi, J., Dorji, P., Shon, H. K. & Hong, S. 2019. Applications of capacitive deionization: desalination, softening, selective removal, and energy efficiency. Desalination, 449, 118-130. https://doi.org/10.1016/j.desal.2018.10.013.
Datar, S. D., Mane, R. & Jha, N. 2022. Recent progress in materials and architectures for capacitive deionization: a comprehensive review. Water Environment Research, 94, e10696. https://doi.org/10.1002/wer.10696.
Dykstra, J. E. 2018. Desalination with porous electrodes: mechanisms of ion transport and adsorption. PhD. Thesis. Wageningen University. Netherlands. https://doi.org/10.18174/443551.
El-Deen, A. G., Boom, R. M., Kim, H. Y., Duan, H., Chan-Park, M. B. & Choi, J. H. 2016. Flexible 3D nanoporous graphene for desalination and bio-decontamination of brackish water via asymmetric capacitive deionization. ACS Applied Materials and Interfaces, 8, 25313-25325. https://doi.org/10.1021/acsami.6b08658.
El-Deen, A. G., Choi, J. H., Kim, C. S., Khalil, K. A., Almajid, A. A. & Barakat, N. A. 2015. TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization. Desalination, 361, 53-64. https://doi.org/10.1016/j.desal.2015.01.033.
Elimelech, M. & Phillip, W. A. 2011. The future of seawater desalination: energy, technology, and the environment. Science, 333, 712-717. https://doi.org/10.1126/science.1200488.
Emmanuel, S. S., Adesibikan, A. A. & Saliu, O. D. 2023. Phytogenically bioengineered metal nanoarchitecture for degradation of refractory dye water pollutants: a pragmatic minireview. Applied Organometallic Chemistry, 37, e6946. https://doi.org/10.1002/aoc.6946.
Folaranmi, G., Bechelany, M., Sistat, P., Cretin, M. & Zaviska, F. 2020. Towards electrochemical water desalination techniques: a review on capacitive deionization, membrane capacitive deionization and flow capacitive deionization. Membranes, 10, 96. https://doi.org/10.3390/membranes10050096.
Kılıç, Z. 2020. The importance of water and conscious use of water. International Journal of Hydrology, 4, 239-241. https://doi.org/10.15406/ijh.2020.04.00250.
Kim, Y. J., Hur, J., Bae, W. & Choi, J. H. 2010. Desalination of brackish water containing oil compound by capacitive deionization process. Desalination, 253, 119-123. https://doi.org/10.1016/j.desal.2009.11.022.
Lee, B., Park, N., Kang, K. S., Ryu, H. J. & Hong, S. H. 2018. Enhanced capacitive deionization by dispersion of CNTs in activated carbon electrode. ACS Sustainable Chemistry and Engineering, 6, 1572-1579. https://doi.org/10.1021/acssuschemeng.7b01750.
Lee, J. H. & Choi, J. H. 2012. The production of ultrapure water by membrane capacitive deionization (MCDI) technology. Journal of Membrane Science, 409, 251-256. https://doi.org/10.1016/j.memsci.2012.03.064.
Lim, J., Shin, Y. U. & Hong, S. 2022. Enhanced capacitive deionization using a biochar-integrated novel flow-electrode. Desalination, 528, 115636. https://doi.org/10.1016/j.desal.2022.115636.
Liu, L., Liao, L., Meng, Q. & Cao, B. 2015a. High performance graphene composite microsphere electrodes for capacitive deionisation. Carbon, 90, 75-84. https://doi.org/10.1016/j.carbon.2015.04.009.
Liu, P., Wang, H., Yan, T., Zhang, J., Shi, L. & Zhang, D. 2016. Grafting sulfonic and amine functional groups on 3D graphene for improved capacitive deionization. Journal of Materials Chemistry A, 4, 5303-5313. https://doi.org/10.1039/C5TA10680J.
Liu, Y., Xu, X., Lu, T., Sun, Z., Chua, D. H. & Pan, L. 2015b. Nitrogen-doped electrospun reduced graphene oxide–carbon nanofiber composite for capacitive deionization. Rsc Advances, 5, 34117-34124. https://doi.org/10.1039/C5RA00620A.
Ma, J., Wang, L. & Yu, F. 2018. Water-enhanced performance in capacitive deionization for desalination based on graphene gel as electrode material. Electrochimica Acta, 263, 40-46. https://doi.org/10.1016/j.electacta.2018.01.041.
Min, B. H., Choi, J. H. & Jung, K. Y. 2018. Improvement of capacitive deionization performance via using a Tiron-grafted TiO2 nanoparticle layer on porous carbon electrode. Korean Journal of Chemical Engineering, 35, 272-282. https://doi.org/10.1007/s11814-017-0270-3.
Murphy, G. & Tucker, J. 1966. The demineralization behavior of carbon and chemically-modified carbon electrodes. Desalination, 1, 247-259. https://doi.org/10.1016/S0011-9164(00)80256-8.
Myint, M. T. Z. & Dutta, J. 2012. Fabrication of zinc oxide nanorods modified activated carbon cloth electrode for desalination of brackish water using capacitive deionization approach. Desalination, 305, 24-30. https://doi.org/10.1016/j.desal.2012.08.010.
Ntakirutimana, S. & Tan, W. 2021. Synergistic effects of ionic and nonionic surfactants treatment on activated carbon electrodes for inverted capacitive deionization. Separation and Purification Technology, 258, 117987. https://doi.org/10.1016/j.seppur.2020.117987.
Porada, S., Zhao, R., Van Der Wal, A., Presser, V. & Biesheuvel, P. 2013. Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58, 1388-1442. https://doi.org/10.1016/j.pmatsci.2013.03.005.
Suss, M., Porada, S., Sun, X., Biesheuvel, P., Yoon, J. & Presser, V. 2015. Water desalination via capacitive deionization: what is it and what can we expect from it? Energy and Environmental Science, 8, 2296-2319. https://doi.org/10.1039/C5EE00519A.
Tang, W., Liang, J., He, D., Gong, J., Tang, L., Liu, Z., et al. 2019. Various cell architectures of capacitive deionization: recent advances and future trends. Water Research, 150, 225-251. https://doi.org/10.1016/j.watres.2018.11.064.
Wang, L., Wang, M., Huang, Z. H., Cui, T., Gui, X., Kang, F., et al. 2011. Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes. Journal of Materials Chemistry, 21, 18295-18299. https://doi.org/10.1039/c1jm13105b.
Welgemoed, T. & Schutte, C. F. 2005. Capacitive deionization technology™: an alternative desalination solution. Desalination, 183, 327-340. https://doi.org/10.1016/j.desal.2005.02.054.
Xie, Z., Shang, X., Yan, J., Hussain, T., Nie, P. & Liu, J. 2018. Biomass-derived porous carbon anode for high-performance capacitive deionization. Electrochimica Acta, 290, 666-675. https://doi.org/10.1016/j.electacta.2018.09.104.
Xing, W., Liang, J., Tang, W., Zeng, G., Wang, X., Li, X., et al. 2019. Perchlorate removal from brackish water by capacitive deionization: experimental and theoretical investigations. Chemical Engineering Journal, 361, 209-218. https://doi.org/10.1016/j.cej.2018.12.074.
Zhao, R., Porada, S., Biesheuvel, P. & Van Der Wal, A. 2013. Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis. Desalination, 330, 35-41. https://doi.org/10.1016/j.desal.2013.08.017.
Zou, L., Morris, G. & Qi, D. 2008. Using activated carbon electrode in electrosorptive deionisation of brackish water. Desalination, 225, 329-340. https://doi.org/10.1016/j.desal.2007.07.014.