مدیریت پیامدهای حملات شیمیایی به شبکه‌های توزیع آب شهری با استفاده از الگوریتم بهینه‌سازی جامعه مورچه‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران، دانشجوی دکترا، دانشکده مهندسی عمران، کالج شهر نیویورک، دانشگاه شهر نیویورک

2 استاد، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران

چکیده

یکی از مهم‌ترین خطرات تهدید کننده شبکه‌های آب شهری، حملات عمدی به‌منظور آلوده کردن آب شبکه با آلاینده‌های شیمیایی است. تصمیمات و اقداماتی که بعد از تشخیص آلودگی در شبکه‌های توزیع آب شهری انجام می‌پذیرد، معمولاً تحت شرایط پیچیده‌ای است و باید سعی شود که بهترین تدابیر برای حفظ سلامت عموم صورت پذیرد. این راهکارها می‌تواند شامل اعلام خطر عمومی، ایزوله کردن ناحیه آلوده شده توسط شیرهای موجود در شبکه به‌منظور جلوگیری از گسترش آن، تخلیه آب از شیرهای آتش‌نشانی موجود در شبکه و همچنین استفاده از پمپ‌ها باشد. در این تحقیق، مدیریت پیامدهای ناشی از حملات شیمیایی، با بهره‌گیری از راهکارهای ذکر شده و با در نظر گرفتن دو هدف اصلی کمینه کردن تعداد گره‌های آلوده و یک هدف جدید با عنوان کمینه کردن زمان بازگشت شبکه به حالت عادی" در کنار کمینه کردن تعداد عملیات واکنشی بررسی شد. این مسئله با استفاده از الگوریتم جامعه مورچه‌ها برای اولین بار به‌صورت تک هدفه و دو هدفه مورد مطالعه قرار گرفت. یکی از نتایج مهم این تحقیق، نقش اساسی استفاده از پمپ‌ها در مدیریت پیامدهای ناشی از این گونه حملات است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Consequences Management of Chemical Intrusions in Urban Water Distribution Networks Using the Ant Colony Optimization Algorithm

نویسندگان [English]

  • ehsan najafi 1
  • abbas afshar 2
1 MSc Graduat, Dept. of Civil Eng., Iran University of Sciences and Tech., Tehran, PhD Student, Civil Eng. Dept., the City College of New York, the City University of New York
2 Prof., Dept. of Civil Eng., Iran University of Science and Tech., Tehran
چکیده [English]

Deliberate chemical contaminant injection is one of the most important dangers which threatens urban water distribution networks. Decisions made following the detection of such contaminant attacks are affected by complicated conditions. A variety of optimal operational measures and strategies must be adopted to safeguard the public health which may include isolation of the contaminated area through valve operations for pollution containment, public alarms, and flushing of the polluted water out of the system through hydrants or pumps. In this study, consequence management of chemical intrusions using the above strategies is investigated with two main objectives:  minimizing the number of polluted nodes and minimizing the operational activities while minimizing "the recovery time of the network to normal conditions" is also considered as a novel objective. The problem is treated as both a single- and a multi-objective optimization problem in which the Ant Colony Optimization Algorithm is used for the first time. One of the most important achievements of this study is the substantial role of pumps in consequence management of such attacks.

کلیدواژه‌ها [English]

  • Contamination
  • Urban water distribution network
  • Consequences Management
  • Ant Colony Optimization Algorithm
1. Ostfeld, A., and Salomons, E. (2004). “Optimal layout of early warning detection stations for water distribution systems security.” J. Water Resour. Plann. Manage., 130(5), 377-385.
2. Berry, J., Hart, W.E., Phillips, C. A., Uber, J. G., and Watson, J. P. (2006). “Sensor placement in municipal water networks with temporal integer programming models.” J. Water Resour. Plann. Manage., 132(4), 218-224.
3. Propato, M. (2006). “Contamination warning in water networks: General mixed-integer linear models for sensor location design.” J. Water Resour. Plann. Manage., 132(4), 225-233.
4. Laird, C.D., Biegler, L.T., and Waanders, B. (2006). “Mixed-integer approach for obtaining unique solutions in source inversion of water networks. ” J. Water Resour. Plann. Manage., 132(4), 242-251.
5. Preis, A., and Ostfeld, A. (2006). “Contamination source identification in water systems: A hybrid model trees linear programming scheme.” J.Water Resour. Plann. Manage., 132(4), 263-273.
6. De Sanctis, A., Shang, F., and Uber, J. (2006). “Determining possible contaminant sources through flow path analysis.” Proceedings of the 8th Water Distribution System Analysis Symposium, Cincinnati, OH.
7. US EPA. (2003). Response protocol toolbox: Planning for and responding to drinking water contamination threats and incidents - overview and application, US Environmental Protection Agency.
8. Baranowski, T. M., and LeBoeuf, E. J. (2006). “Consequences management optimization for contaminant   detection and isolation.” J. Water Resour. Plann. Manage., 132(4), 274-282.
9. Preis, A., and Ostfeld, A. (2008). “Multiobjective contaminant response modelling for water distributions  systems security.” J. Hydroinform.,10(4), 267-274.
10. Baranowski, T.M., and LeBoeuf, E.J. (2008). “Consequences management utilizing optimization. ” J. Water Resour. Plann. Manage., 134(4), 386-394.
11. Poulin, A., Mailhot, A., Grondin, P., Delorme, L., Periche, N., and Villeneuve, J.P. (2008). “A heuristic approach for operational response to drinking water contamination.” J. Water Resour. Plann. Manage., 134(5), 457-465.
12. Poulin, A., Mailhot, A., Periche, N., Delorme, L., and Villeineuve, J.-P. (2010). “Planning unidirectional flushing operations as a response to drinking water distribution system contamination.” J. Water Resour. Plann. Manage. 136(6), 647-657.
13. Alfonso, L., Jonoski., A., and Solomatine, D. (2010). “Multiobjective optimization of operational responses for contaminant flushing in water distribution networks.” Water Resour. Plann. Manage., 136(1), 48-58.
14. Haxton, T., and Uber, J.G. (2010). “Flushing under source uncertainties.”
 < oaspub.epa.gov/eims/eimscomm.getfile?p(download)id=496511> (July. 11, 2011).
15- Dorigo, M. (1992). “Optimization, learning and natural algorithms. ” PhD Thesis, Politecnico di Milano, Italy.
16. Afshar, A., Sharifi, F., and Jalali, M.R.(2009). “Non-dominated archiving multi-colony ant algorithm for multi-objective optimization: Application to multi-purpose reservoir operation.” Engineering Optimization, 41(4), 313-325.
17. Dorigo, M., and Gambardella, L.M. (1997). “Ant colony system: A cooperative learning approach to the traveling salesman problem.” IEEE Transactions on Evolutionary Computation, 1(1), 53-66.