الگوریتم دسته ذرات اصلاح شده ترکیبی برای تنظیم ضرایب شبکه‌های توزیع آب

نوع مقاله: مقاله پژوهشی

نویسنده

استادیار، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

10.22093/wwj.2019.142659.2727

چکیده

با توجه به وسعت و پیچیدگی شبکه‌های توزیع آب، برای پایش عملکرد آنها در مرحله بهره‌برداری، نیاز به مدل‌سازی کامپیوتری است. از موضوعات بسیار مهم در مدل‌های کامپیوتری، تطبیق نتایج حاصل از مدل‌ با واقعیت است که لازم است با تنظیم دقیق ضرایب مدل انجام شود. یافتن یک روش مناسب برای تنظیم ضرایب مدل یکی از چالش‌های اصلی در مدل‌سازی کامپیوتری است. در این پژوهش، با اصلاح رابطه سرعت حرکت دسته ‌ذرات و ترکیب آن با عملگر جهش، یک مدل دسته ذرات اصلاح شده با عملگر جهش برای تنظیم ضرایب شبکه‌های توزیع آب ارائه شد. با تعریف ضرایب مدل‌ها، چهار مدل شامل مدل بهینه‌سازی دسته ذرات استاندارد، مدل بهینه‌سازی دسته ذرات استاندارد اصلاح شده، مدل بهینه‌سازی دسته ذرات استاندارد با عملگر جهش و مدل بهینه‌سازی دسته ذرات استاندارد اصلاح شده با عملگر جهش ساخته شد. برای صحت‌سنجی معادله اصلاح شده از تابع محک ریاضی راسترین، برای صحت‌سنجی مدل‌ها از شبکه دوحلقه‌ای و برای بررسی تفضیلی آنها از شبکه چهار حلقه‌ای و شبکه واقعی استفاده شد. بهینه‌سازی در محیط MATLAB و با تلفیق الگوریتم بهینه‌سازی دسته ذرات و نرم‌افزار EPANET انجام شد. مقایسه نتایج مدل دسته ذرات استاندارد با مدل دسته ذرات استاندارد اصلاح شده برای تابع محک ریاضی راسترین نشان می‌دهد که اصلاح معادله سرعت حرکت دسته ذرات، قابلیت مدل در تعیین جواب واقعی را افزایش و هزینه محاسبات را کاهش می‌دهد. مقایسه نتایج مدل‌ها برای شبکه دو حلقه‌ای و چهارحلقه‌ای نشان می‌دهد که مدل دسته ذرات اصلاح شده با عملگر جهش به‌ترتیب با 7/96 و 95 درصد احتمال پیدا کردن جواب بهینه، بهترین عملکرد را در بین مدل‌های موجود بر اساس این شاخص دارد. همچنین مدل دسته ذرات اصلاح شده برای هر دو شبکه نمونه دوحلقه‌ای و چهار حلقه‌ای در کمترین زمان جواب بهینه را پیدا کرده است و بهترین مدل بر اساس این شاخص در بین مدل‌های موجود است. مقایسه نتایج مدل‌ها در شبکه توزیع آب اهر نشان می‌دهد مدل دسته ذرات استاندارد اصلاح شده با عملگر جهش با داشتن کمترین مقدار حداقل و متوسط خطای داده‌های ساخت، بهترین عملکرد را در بین مدل‌های دسته ذرات دارد. به‌طورکلی، اصلاح معادله سرعت حرکت دسته ذرات در قالب مدل دسته ذرات استاندارد اصلاح شده و همچنین اصلاح معادله دسته ذرات و تلفیق آن با عملگر جهش در قالب مدل دسته ذرات استاندارد اصلاح شده با عملگر جهش، توانمندی بیشتری را برای تنظیم ضرایب شبکه توزیع آب به‌وجود می‌آورد.

کلیدواژه‌ها


عنوان مقاله [English]

Hybrid Modified Particle Swarm Optimization Algorithm for Adjustment of Water Distribution Network Coefficients

نویسنده [English]

  • Mehdi Dini
Assist. Prof., Dept. of Civil Engineering, College of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
چکیده [English]

Regarding the complexity of WDNs, the need for computerized modelling of WDNs is felt more than ever for monitoring their performance at the operational stage. One of the most important issues in modelling is to adjust the results of modelling with the real status of the system. So it is necessary to calibrate the model by observed data. Finding a suitable method for adjusting the model's coefficients is one of the main challenges in computerized modelling. In this paper, a modified particle swarm method is presented to adjustment of water distribution network coefficients by modifying the velocity equation of the particle swarm and Combining it with the mutation operator. Thus by defining the coefficients of the models, four models such as standard particle swarm optimization model (SPSO), modified standard particle swarm optimization model (MSPSO), standard particle swarm optimization model with a mutation (SPSOM) and modified standard particle swarm optimization model with a mutation (MSPSOM) are constructed. The Rastrigin test function is used for verification of the modified particle swarm equation and the two-loop network is used for verification of models and also the four-loop network and real water distribution network are used for detailed analysis. The optimization is done in MATLAB by combining the particle swarm optimization algorithm and the EPANET software. Comparison of the results of the standard particle swarm model and the modified standard particle swarm model for the Rastrigin test function showed that modifying the particle swarm velocity equation increased the model's ability to determine the actual answers and reduced the costs. The MSPSOM model finds the optimal answer for two-loop and four-loop networks with a probability of 96.7 and 95 percent respectively. So it is the best model among all models in this criteria. Also, the MSPSO model finds the optimal answer for two-loop and four-loop networks in lowest time compared to other models. So it is the best model among all models in this criteria. Comparing the results of the models in the Ahar water distribution network showed that the modified standard particle swarm with the mutation model have the lowest minimum and average values of the modeling data error. So it has the best performance among the particle swarm models. In general, the correction of the particle swarm velocity equation in the form of the standard particle swarm model, and the correction of the particle swarm velocity and its integration with the mutation operator in the form of a modified standard particle swarm with a mutation has a higher ability to adjust the water distribution network coefficients.

کلیدواژه‌ها [English]

  • Particle Swarm Algorithm
  • Water Distribution Network
  • Adjustment of Coefficients
  • Mutation

Alperovits, E. & Shamir, U. 1977. Design of optimal water distribution systems. Water Resources Research, 13(6), 885-900.

Asadzadeh, M., Tolson, B. & McKillop, R. 2011. A two stage optimization approach for calibrating water distribution systems. Proceedings of the 12th Annual Conference on Water Distribution Systems Analysis (WDSA), Tucson, Arizona, United States, 1682-1694.

Blum, C. & Roli, A. 2003. Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Computing Surveys, 35(3), 268-308.

Behzadian, K., Ardeshir, A., Jalilsani, F. & Sabour, F. 2008. A comparative study of stochastic and deterministic sampling design for model calibration. Proceedings of the World Environmental and Water Resources Congress, Honolulu, Hawaii, United States, 1-11.

Borzi, A., Gerbino, E., Bovis, S. & Corradini, M. 2005. Genetic algorithms for water distribution network calibration: a real application. Proceedings of the 8th International Conference on Computing and Control for the Water Industry, University of Exeter, UK, 149-154.

Cheng, W. & He, Z. 2011. Calibration of nodal demand in water distribution systems. Journal of Water Resources Planning and Management, 137(1), 31-40.

Dini, M. & Tabesh, M. 2014. A new method for simultaneous calibration of demand pattern and hazen-williams coefficients in water distribution systems. Water Resources Management, 28, 2021-2034.

Dini, M. & Tabesh, M. 2016. Water distribution network modeling by considering the effect of material, diameter and age of pipes in Hazen williams coefficients adjustment. 9th National Congress on Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran. (In Persian)

Eberhart, R.C. & Shi Y. 2001. Particle swarm optimization: developments, applications and resources. Proceeding  Congress on Evolutionary Computation, Seoul, Korea.

Fiorini Morosini, A., Veltri, P., Costanzo F., Savic, D. 2013. Identification of leakages by calibration of WDS models. 12th International Conference on Computing and Control for the Water Industry, CCWI, Perugia, Italy, 660-667.

Kang, D. & Lansey, K. 2011. Demand and roughness estimation in water distribution systems. Journal of Water Resources Planning and Management, 137(1), 20-30.

Kennedy, J. & Eberhart, R.C. 1995. Particle swarm optimization. IEEE International Conference on Neural Networks, Perth, Australia.

Kumar, S.M., Narasimhan, S. & Bhallamudi, S.M. 2010. Parameter estimation in water distribution networks. Journal of Water Resources Management, 24, 1251-1272.

Lansey, E., El-Shorbagy, W., Ahmed, I., Araujo, J. & Haan, T. 2001. Calibration assessment and data collection for water distribution networks. Journal of Hydraulic Engineering, 127(4), 270-279.

Faghfoor Maghrebi, M., Hasanzadeh, Y. & Yazdani, S. 2013. Calibration of water supply systems based on ant colony optimization. Journal of Water and Wastewater, 24(1), 101-111. (In Persian)

Meirelles, G., Manzi1, D., Brentan, B., Goulart, T. & Luvizotto, J. E. 2017. Calibration model for water distribution network using pressures estimated by artificial neural networks. Water Resources Management, 31(13), 4339-4351.

Mühlenbein, H., Schomisch, D. & Born, J. 1991. The parallel genetic algorithm as function optimizer. Parallel Computing, 17, 619-632.

Niu, Z.G., Wang, Y.F., Zhang, T. & Zhang, H.W. 2011. Calibration of friction resistance coefficient and calculation method of leakage localization of water supply network. Journal of Tianjin University Science and Technology, 44(4), 364-368.

Ormsbee, L.E. 1989. Implicit network calibration. Journal of Water Resources Planning and Management, 115(2), 243-257.

Ormsbee L.E. & Wood D.J. 1986. Explicit pipe network calibration. Journal of Water Resources Planning and Management, 112(2), 166-182.

Rastrigin, L.A. 1974. Systems of external control, Nauka Publishing House, Moscow, Russia.

Rossman, L.A. 2000. EPANET2: user’s manual, U.S. Environmental Protection Agency, Risk Reduction Engineering Laboratory, Cincinnati, Ohio, USA.

Sanz, G. & Perez, R. 2013. Demand pattern calibration in water distribution networks, 12th International Conference on Computing and Control for the Water Industry, CCWI, Perugia, Italy, 1495-1504.

Sedki, A. & Ouazar, D. 2012. Hybrid particle swarm optimization and differential evolution for optimal design of water distribution systems. Advanced Engineering Informatics, 26, 582-591.

Shamir, U. & Howard, C.D.D. 1968. Water distribution system analysis. Journal of the Hydraulic Division, 94(1), 219-234.

Tabesh, M., Jamasb B. & Moeini, R. 2011. Calibration of water distribution hydraulic models: a comparison between pressure dependent and demand driven analyses. Urban Water Journal, 8(2), 93-102.

Vassiljev, A., Koppel T. & Puust R. 2005. Calibration of the model of an operational water distribution system. Proceedings of the 8th International Conference on Computing and Control for the Water Industry, University of Exeter, UK, 155-159.

Walski, T.M. 1983. Technique for calibrating network models. Journal of Water Resources Planning and Management, 109(4), 360-372.

Wang, H.X., Guo, W., Xu, J. & Gu, H. 2010. A hybrid PSO for optimizing locations of booster chlorination stations in water distribution systems. International Conference on Intelligent Computation Technology and Automation, IEEE Computer Society, Washington DC, USA.

Yu, Zh., Tian, Y., Zheng, Y. & Zhao, X. 2009. Calibration of pipe roughness coefficient based on manning formula and genetic algorithm. Transactions of Tianjin University, 15(6), 452-456.

Zhang, T.Q., Huang, Y.D. & Wu, X.G. 2007. Optimal locations of water quality monitoring stations in water distribution systems. Journal of Zhejiang University, 41(1), 1-5.