The Performance of Net-Like Rotating Biological Contactor Bioreactor in Removal of Sulfamethoxazole Antibiotic

N. Azimi 1, M. Sadeghpour Haji 2, S. Khalili 3

1. PhD in Civil and Environmental Engineering, Fan Avaran Ab Saze Iranian Consulting Engineering Company, Babol, Iran
 (Corresponding Author) azimi.612@yahoo.com
2. Assist. Prof., Dept. of Civil Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
3. MSc of Environmental Engineering, Water and Wastewater Company, Sari, Iran

(Received May 12, 2018 Accepted Oct. 22, 2018)

To cite this article :

Abstract
Pharmaceutical wastewater treatment is a complicated process due to presence of various kinds of toxic chemicals and antibiotics that are harmful to any type of organisms. In this paper, elimination of sulfamethoxazole antibiotic from artificial sewage was investigated. A pilot scale Rotating Biological Contactor (RBC) with three compartments, 48 discs, and total volume of 78.75 L was employed. The antibiotic removal was measured at various COD concentration, hydraulic retention times (HRT) and concentrations of sulfamethoxazole. The results indicated that by increasing in OLR and HRT, SMX removal efficiency was increased and in the first 12 hours of the treatment process, SMX removal efficiency is about 50%, and the maximum removal occurred within the first 72 hours, which was more than 95%. Also, the obtained results demonstrated that increasing COD concentration had a positive impact on SMX removal efficiency, which was most probably due to the utilization of SMX as a nitrogen source. SMX removal efficiency in OLRs 0, 2, 4, 8, 16 and 32 g COD / L.d was 17, 44, 75, 72, 78 and 82 percent, respectively. It was also revealed that most SMX and organic matter removal occurred in the first compartment of the NRBC, that's about 57 percent. This study indicated that employing the attached growth system is a good alternative for conventional activated sludge system in pharmaceutical wastewater treatment.

Keywords: Antibiotics, Biological Treatment, Sulfamethoxazole, COD Removal, Pharmaceutical Wastewater.
عملکرد بیوراکتور دیسک‌های بیولوژیکی چرخان در تصفیه فاضلاب حاوی آنتیبیوتیک سولفامتوسازول

نسترن عظیمی، 1-مانده صادق‌نژاد، حاجی، 2-سعید خیلی، 3

1-دکترای مهندسی عمران، مهندسی زیست، شرکت مهندسین مشترک در اثر آب سازه انگلیسی، بالی، ایران
2-استاد هیئت مهندسی عمران، واحد توانمندی اقتصادی، دانشگاه آزاد اسلامی، قم، ایران
3-کارشناس ارشد مهندسی مهندسی، شرکت در انتقال مهندسی، ساری، ایران

(دریافت 22 ژوئن 2019 پایه‌بر 30 ژوئیه 2019)

چکیده

تصمیم‌گیری صنایع صنعتی به دلیل وجود انتخاب مخزن شیمیایی و آنتیبیوتیک‌های که می‌توانند برای هر موجود زنده‌ای ضرر بناشند، قراردادی بیشتری است. در این پژوهش به بررسی هدف آنتیبیوتیک سولفامتوسازول در فاضلاب مسئولیت بوته‌های پاک‌کننده تبدیل شد. این مطالعه از نظر تحقیقات ساخت توانایی و کمک‌های توانایی خود اهمیت‌مندی است. در این مطالعه، روند نلموتور چرخان که در زمان‌های ماده‌های کنترلی مخزن بهتری مقدار مصرف، 26 ساعت در نظر گرفته شد، سطح مخلوط SMX نخستین بار افزایش یافت. در 12 ساعت اول فرآیند تصفیه، راندمان هدف SMX تایباد با OLR و HRT را یافته و به سمت بهبود به‌طور می‌تواند به‌طور درست رشد. همچنین به‌دلیل این که هر 50 درصد بود و به‌دسته‌های هدف (در 32 ساعت اول اتفاق اتفاق و به بهتری بر 90 درصد رشد. همچنین به‌دسته‌های هدف در 12 ساعت اول اتفاق اتفاق و به بهتری بر 90 درصد رشد. همچنین به‌دسته‌های هدف در 12 ساعت اول اتفاق اتفاق و به بهتری بر 90 درصد رشد. همچنین به‌دسته‌های هدف در 12 ساعت اول اتفاق اتفاق و به بهتری بر 90 درصد رشد. همچنین به‌دسته‌های هدف در 12 ساعت اول اتفاق اتفاق و به بهتری بر 90 درصد رشد. همچنین به‌دسته‌های هدف در 12 ساعت اول اتفاق اتفاق و به بهتری بر 90 درصد رشد. همچنین به‌دسته‌های HRT و SMX به روشی چون تایباد با OLR و HRT را یافته و به سمت بهبود به‌طور می‌تواند به‌طور درست رشد. همچنین به‌دسته‌های HRT و SMX به روشی چون تایباد با OLR و HRT را یافته و به سمت بهبود به‌طور می‌تواند به‌طور درست رشد. همچنین به‌دسته‌های HRT و SMX به روشی چون تایباد با OLR و HRT را یافته و به سمت بهبود به‌طور می‌تواند به‌طور درست رشد. همچنین به‌دسته‌های HRT و SMX به روشی چون تایباد با OLR و HRT را یافته و به سمت بهبود به‌طور می‌تواند به‌طور درست رشد. همچنین به‌دسته‌های HRT و SMX به روشی چون تایباد با OLR و HRT را یافته و به سمت بهبود به‌طور می‌تواند به‌طور درست رشد. همچنین به‌دسته‌های HRT و SMX به روشی چون تایباد با OLR و HRT را یافته و به سمت بهبود به‌طور می‌تواند به‌طور درست رشد. HRT و SMX به روشی چون تایباد با OLR و HRT را یافته و به سمت بهبود به‌طور می‌تواند به‌طور درست رشد. HRT و SMX به روشی چون تایباد با OLR و HRT را یافته و به سمت بهبود به‌طور می‌تواند به‌طور درست رشد. HRT و SMX به روشی چون تایباد با OLR و HRT را یافته و به سمت بهبود به‌طور می‌تواند به‌طور درست رشد. HRT و SMX به روشی چون تایباد با OLR و HRT را یافته و به سمت بهبود به‌طور می‌تواند به‌طور درست رشد. HRT و SMX به روشی چون تایباد با OLR و HRT را یافته و به سمت بهبود به‌طور می‌تواند به‌طور درست رشد. HRT و SMX به روشی چون تایباد با OLR و HRT را یافته و به سمت بهبود به‌طور می‌تواند به‌طور درست رشد. HRT و SMX به روشی چون تایباد با OLR و HRT را یافته و به سمت بهبود به‌طور می‌تواند به‌طور درست رشد. HRT و SMX به روشی چون تایباد با OLR و HRT را یافته و به سمت بهبود به‌طور می‌تواند به‌طور درست رشد. HRT و SMX به روشی چون تایباد با OLR و HRT را یافته و به سمت بهبود به‌طور می‌تواند به‌طور درست رشد. HRT و SMX به روشی چون تایباد با OLR و HRT را یافته و به سمت بهبود به‌طور می‌تواند به‌طور درست R

واژگان کلیدی: آنتی‌بیوتیک، تصفیه‌های بیولوژیکی، سولفامتوسازول، هدف، فاضلاب دارویی

1- مقدمه

کاربرد و سیاست تصفیه‌های بیولوژیکی پساب‌های زمین‌های ناسالمی برای ایجاد (Tan et al., 2013) سنگین مقاوم در برای آنتی‌بیوتیک ایجاد کرده است. این محققان در طی 2016، Pruden et al., (2006) مصرف منجر به تجربه‌های (Godfrey et al., 2007) در حقيقة آنتی‌بیوتیک‌های مصرف شده توسط انسان‌ها در بین کلی‌ها M

2-Trimethoprim

3-Sulfamethazine

4-Erythromycin

5-Ciprofloxacin
خانه‌های تولید دارو در غلظت‌های بالای ۱۰۰۰ میلی‌گرم در لیتر گزارش گردیده است. علاوه بر این، وجود آنتی‌بیوتیک‌ها در پساب کارخانه‌های سولفورامیدها می‌توان به سولفورامیدها و سولفورامیدها در پساب کارخانه‌های آنتی‌بیوتیک با استفاده از سیستم RBC اندازه‌گیری شد. در این پژوهش به بررسی تصفیه هوازی آنتی‌بیوتیک سولفورامیدها با فرمول شیمیایی C$_{10}$H$_{11}$N$_{3}$O$_{2}$ در سیستم RBC در پایان نیمه صنعتی پرداخته شد و نتایج پارامترهای مجهز HRT و مصرف بیشتر در سیستم SMX و COD در سیستم RBC پر از SMX در سیستم RBC گردید.

2. مواد و روش‌ها
سولفورامیدها از شرکت کمپانی و بقیه مواد شیمیایی از نماهایی که رنگ آمیزی های استخراج فاز جامد ساخته شدند. در هر دو حالت از RBC و همچنین فیلترهای کیتیپور (HLB®) و واکتر (1/12 میکرومتر) به منظور فیلتراسیون مورد استفاده قرار گرفت. استونیترول (11009) نمایشده شد. در انتخاب سیستم UV/VIS و قطع 4/6 میلی‌گرم/لیتر داشت. در سیستم (Hamiton, Reno, از تریک نمونه با سرگذار ۱۰۰ میکرولیتری (US) (Bouton, ۲۰۱۲) معمولاً به منظور هیدرولیکی (Hydraulic Retention Time (HRT)) و کاهش غلظت آنتیبیوتیک‌های استخراج فاز جامد تعداد شده. در این مطالعه از ۱۲۰ مولکول استخراج در دو مورد، مورد تحقیق داشت. در سیستم و ۲/۰ مول‌الومینیوم استخراج در دو مورد استونیترول بود. شرایط ۱۲۰ میلی‌لیتر در دو مورد و طول موج مولکول‌شناسی. به سولفورامیدها مورد اول ۱۰۰۰ میلی‌گرم در لیتر گزارش گردیده است. سولفورامیدها به دلیل داشتن خواص ضد بакتری و ضد انگل در کاربردهایی که در این پایان در ساخت و ساز رولکولیشن شناخته شده که سولفورامیدها مورد از

2. Sulphonamethoxine
3. Sulphadimethoxine
4. Hydraulic Retention Time (HRT)
5. Organic Loading Rates (OLR)
6. Merck
7. Solid Phase Extraction Cartridges (SPEC)
8. Waters
9. Millipore
10. Whatman
11. Acetonitrile

* Rotating Biological Contactor (RBC)
Fig. 1. The fabricated RBC pilot

Table 1. Specification of the NRBC pilot

<table>
<thead>
<tr>
<th>Specifications of the Reactor</th>
<th>Shape: Rectangular Cube</th>
<th>Shape: Circle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>75 cm</td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>35 cm</td>
<td>PVC</td>
</tr>
<tr>
<td>Height</td>
<td>30 cm</td>
<td>33 cm</td>
</tr>
<tr>
<td>Reactor thickness</td>
<td>0.8 cm</td>
<td>2 mm</td>
</tr>
<tr>
<td>The height of the liquid inside the reactor</td>
<td>25 cm</td>
<td></td>
</tr>
<tr>
<td>Total Reactor volume</td>
<td>75.78 L</td>
<td>46</td>
</tr>
<tr>
<td>Useful volume of each stage</td>
<td>21.9 L</td>
<td>Total surface of each disk</td>
</tr>
<tr>
<td>Total useful volume of the reactor</td>
<td>65.5 L</td>
<td>Total disk area</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Immersion percentage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rotational speed</td>
</tr>
</tbody>
</table>

Table 1: Specification of the NRBC pilot

| Specifications of Disc | | |
|------------------------|-----------|
| **Total disk number** | 46 |
| **Total disk area** | 7.1 m² |
| **Total useful volume**| 65.5 L |

(Original text in Farsi)

شکل 1- فلودیاگرام پایلوت RBC نشانه شده در آزمایشگاه RBC

جدول 1- مشخصات پایلوت

NRBC

1- 2. ترکیب فاضلاب مصنوعی و عملکرد پیراکتور به منظور راه اندازی پایلوت از لحن تصفیه خانه بهارستان و لی عصر شهرستان قائمشهر در استان مازندران که بی سیستم لحن فعال متعارف کار می‌کند، استفاده شده و 10 درصد حجم راکتور به این لحن اختصاص داده شده، راکتور به مدت 20 روز در وضعیت ناپوسته بی‌فاضلاب مصنوعی مشکل از آب می‌پذیرفت، پاسیم هیدروژن فسفات صنعتی (C₆H₈(Na₂O₄)S)، در دمای 150 میلیلتر در دمای تنظیم شد. (Drillia et al., 2005)

این پژوهش در آزمایشگاه پایگاه گونالوژی دانشگاه صنعتی تزویرولی پایلوت در استان مازندران، شهرستان پایتخت شهر به مدت 24 ساعت در زمان راه اندازی، پایلوت بطور پیوسته و بدون توقف در این آزمایشگاه کار کرد، نمونه‌های شیمیایی سیستم نشانه شده NRBC

1 Batch
در جریان و رودی راکتور

- آفرودن SMX

یک ابزار اضافه بانده، اتانی بیوتابیک در غلظت‌های مختلف و همچنین در OLAR متقابل به جریان و رودی اضافه می‌شود. تغییر در جریان و رودی، در سیستم سیستم تا رتیبان به شرایط پایدار ادامه پذیری زمان مورد نیاز برای دستیابی به حالت پایدار در غلظت‌های مختلف متفاوت بوده و برای غلظت‌های 1.5، 2.5، 3.5، 4.5 و 5.5 میلی‌گرم در لیتر آتانی بیوتابیک، تغییر برابر با 7.4، 7.5، 7.6 و 7.7 روز بود. نوسانات در حذف در غلظت‌های پایین آتانی بیوتابیک (1 تا 15 میلی‌گرم در لیتر) قابل قلم پذیری بوده و به‌همین دلیل زمان‌های نیاز برای تطبیق در غلظت‌های بالاتر آنی بیوتابیک (15 تا 120 میلی‌گرم در لیتر) بالاتر بوده و به‌همین دلیل زمان‌های نیاز برای تطبیق بیش از 16 روز بوده و به‌همین دلیل زمان‌های نیاز برای تطبیق بیش از 16 روز بوده.

جدول 2: تحلیلی از اولیه‌ای‌های فاضلاب تصفیه‌خانه پیمان‌ها برای اکتشافات و راهنما برای استخدام

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>7.3</td>
</tr>
<tr>
<td>EC</td>
<td>1650 μS/cm</td>
</tr>
<tr>
<td>TDS</td>
<td>1105 μS</td>
</tr>
<tr>
<td>TSS</td>
<td>52 ppm</td>
</tr>
<tr>
<td>DO</td>
<td>5.28 ppm</td>
</tr>
<tr>
<td>BOD</td>
<td>58 ppm</td>
</tr>
<tr>
<td>COD</td>
<td>96 ppm</td>
</tr>
<tr>
<td>Free chlorine</td>
<td>1 ppm</td>
</tr>
</tbody>
</table>

در این پژوهش می‌توان خواص تغییر در نسبت نسبت خود به قسمت‌های بوده که نسبت کربن، نیتروژن و فسفر به صورت 100/5/1 با حفظ شود. روش‌های فاضلاب پیمان‌های ولی مصر

- توصیف تغذیه‌های بی‌نیاز به استفاده

شکل 2- تشکیل بیوفیلم پیمان‌ها در پایان دایره‌های آب و فاضلاب

شکل 3- حذف COD در رودی راکتور

شکل 4- تصویر بایو تیک و بیوفیلم در پایان دایره‌های آب و فاضلاب
۶۴ درصد کاهش یافت. به طوری که در غلظت‌های HRT متغیر از ۶ تا ۱۲ ساعت، بهترین حذف آنتی‌بیوتیک با ۷۰ درصد در میان حذف را نشان داد. به‌طوری که در غلظت‌های HRT ۹۰/۵/۹۰ و ۹۰/۵/۹۰ درصد بود، همچنین نتایج نشان داد که تجزیه SMX در لیتر آنتی‌بیوتیک به‌طور ترتیب ۴۵ و ۵۵ درصد بود و همچنین بیشتر از ۷۲ ساعت اول اتفاق جز در غلظت‌های HRT متغیر از ۶ تا ۱۲ ساعت، بهترین حذف آنتی‌بیوتیک با ۷۰ درصد در میان حذف را نشان داد. به‌طوری که در غلظت‌های HRT ۹۰/۵/۹۰ و ۹۰/۵/۹۰ درصد بود، همچنین نتایج نشان داد که تجزیه SMX در لیتر آنتی‌بیوتیک به‌طور ترتیب ۴۵ و ۵۵ درصد بود و همچنین بیشتر از ۷۲ ساعت اول اتفاق

شکل ۴. حذف SMX و COD در غلظت‌های مختلف و HRT متغیر

الف. SMX=۱۰ (mg/L) **ب.** SMX=۴۵ (mg/L) **ج.** SMX=۹۰ (mg/L)
باکتری‌ها در بخش اول سیستم است که در معرض بار آنی بالاتری SMX و COD قرار گرفته و بار حذف کل SMX و COD نسبت به بار آنی و آنتی‌بیوتیک ورودی، در بخش دوم به ترتیب ۲۷ و ۶۵ درصد بود.

در بخش سوم نسبت بار آنی و آنتی‌بیوتیک ۸۵ و ۷۰ درصد بود.

COD removal and SMX removal (%)

![Fig. 5. The COD and SMX removal efficiency in various organic load rates (HRT=36h)](image)

Fig. 5. The COD and SMX removal efficiency in various organic load rates (HRT=36h)

**ه نگاه داشته شد، بنابراین بخش که در شکل ۵ نشان داده شده است، نشان می‌دهد که راندمان حذف COD و SMX در هر واحد واحد به ترتیب برابر با ۱۷ و ۸۴ درصد بود. به همین ترتیب، نتایج نشان می‌دهد که سیستم NRBC نتایج نشان می‌دهد که بخش‌های بالاتری در حذف آنتی‌بیوتیک‌ها دارد.

Fig. 6. The COD and SMX removal efficiency in various compartment of NRBC (HRT=36h, SMX=45mg/L)

شکل ۶- حذف COD و SMX در بخش‌های مختلف راکتور NRBC (HRT=36h, SMX=45mg/L)

نتایج گیری

در بخش پزوهش، یک بیمارکروم رشد چسبیده به منظور تصفیه فاضلاب حاوی غلظت‌های بالای آنتی‌بیوتیک سولفاتومیکسلولار کربن، استفاده قرار گرفت و راندمان حذف آنتی‌بیوتیک در COD و SMX که در بخش‌های مختلف مورد بررسی قرار گرفت و بار حذف هر واحدی به ترتیب HRT ۲۰ و ۸۴ درصد بود.

SMX بر حذف COD

به‌منظور بررسی تأثیر غلظت SMX بر راندمان حذف COD منظور شد. به‌منظور بررسی تأثیر SMX به راحتی در حذف COD و SMX در سه مرحله از ۲۰ تا ۴۰۰۰۰ میلی‌گرم به‌منظور لیتر استفاده شد و رابطه بین تعداد استعدادهای صورت گرفته در حذف COD با غلظت SMX سنجیده شد.

NRBC

در بخش ۲-۵- بازه حذف SMX و COD در هر بخش سیستم به‌طور جداگانه مورد بررسی قرار گرفت تا راندمان سیستم در حذف هم‌زمان ترکیبات آنتی‌بیوتیک به‌منظور موتوری به‌منظور کنترل راندمان بازه‌ی آنتی‌بیوتیک به‌منظور کنترل راندمان، مقدار حذف COD و SMX در بخش اول سیستم به ترتیب برابر با ۱۷ و ۸۴ درصد بود.

Journal of Water and Wastewater

Vol. ۶، No. ۳۷، ۲۰۱۹
References

