بررسی نوسانات فشار در بستر پرش هیدرولیکی مستغرق

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای سازه‌های آبی، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

2 استادیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

3 دانشیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی، مشهد، ایران

4 استادیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه پیام نور، انزلی، ایران

چکیده

پرش هیدرولیکی دارای کاربردهای فراوانی در انتقال و تصفیه آب و فاضلاب است. این پدیده از دیدگاه ماکروسکوپی، یک جریان متغیر ناگهانی است که با گرداب‌های قوی همراه است و نوسانات تلاطمی بزرگی را ایجاد می‌کند. اثر فشارهای نوسانی ناشی از تلاطم در پرش با اهمیت است و باید در طراحی سازه مورد توجه قرار گیرد. نوسانات فشار می‌تواند با فرسایش و لرزش موجب آسیب در حوضچه آرامش شود. در این پژوهش به مشخصات تلاطمی پرش هیدرولیکی مستغرق در پایین‌دست یک سرریز بلند و بررسی اثرات درجه استغراق پرش در میزان ضرایب نوسانات فشار پرداخته شد. به این منظور آزمایش‌ها در یک مجرای مستطیلی شامل سرریزی با زاویه 30 درجه و ارتفاع 8/1 متر و کانال افقی به عرض 3/0 و طول 3 متر، برای عدد فرود 07/7 با درجات مختلف استغراق انجام شد. داده‌های فشار با استفاده از مبدل فشار با فرکانس نمونه‌برداری 100 هرتز ثبت شد. آزمایش‌ها نشان داد شدت نوسانات فشار در بستر پرش هیدرولیکی مستغرق تابعی از عدد فرود، فاصله نسبی از ابتدای حوضچه و درجه استغراق است. با افزایش درجه استغراق، ضرایب نوسانات فشار (  ،  و ) کاهش می‌یابد به‌طوری که با افزایش درجه استغراق از 1 تا 2، حداکثر ضریب انحراف معیار ( )89 درصد کاهش یافت. همچنین حداکثر ضرایب  و  در کف حوضچه آرامش در فاصله کمتر از 20 برابر عمق اولیه پرش (X/Y1£20  ) از محل شروع حوضچه رخ داد. بنابراین فاصله مذکور به لحاظ طراحی سازه‌ای حوضچه حساسیت بیشتری دارد و درجه استغراق بیشتر در جهت اطمینان طراحی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Pressure Fluctuations on the Bed of Submerged Hydraulic Jump

نویسندگان [English]

  • Kamran Yousefi 1
  • Majid Heydari 2
  • Hossein Banejad 3
  • Mahnaz Karimi 4
1 PhD Student of Water Structures, Dept. of Water Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
2 Assist. Prof., Dept. of Water Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
3 Assoc. Prof., Dept. of Water Engineering, Faculty of Agriculture, Ferdowsi University, Mashhad, Iran
4 Assist. Prof., Dept. of Water Engineering, Faculty of Agriculture, Payame-Nur University, Anzali, Iran
چکیده [English]

The hydraulic jump has many usages in transport and treatment of water and wastewater. It may be considered macroscopically as a rapidly varied flow with strong vortices those generate macro turbulent fluctuations. The pressure fluctuation due to turbulence must be carefully considered in designation of hydraulic structures. In addition; cavitation, abrasion, and vibration due to the intense turbulence and pressure fluctuation may also contribute significantly to damage of a stilling basin. This paper discusses the characteristics of pressure fluctuation in submerged hydraulic jump downstream of spillways and also the effects of submergence ratio on the pressure fluctuation. Method: The experiments were carried out in a rectangular conduit (constituted from a30ospillway by 1.8m height and a horizontal flume by 0.3m width and 3m length), for the Froude number of 7.07 and also different ratios of submergence. Pressure data were recorded by pressure transducers having sampling rate of 100 Hz. Results: Experiments show that intensity of pressure fluctuation on the hydraulic jump bed is a function of Froude number, relative distance from basin’s beginning and submergence ratio. Increasing of submergence ratio, decreases the coefficients of pressure fluctuation ( , , ) so that increasing the s. r. from 1 to 2, the decreases %89. Also the coefficient of standard deviation  and the extreme coefficients of pressure fluctuation  and decrease by increasing the s. r., and maximum value of  and occur in the range of X/Y1£20. Discussion: Therefore, this range has more importance from the structural designation of view and the higher ratio of submergence supports the higher confidence for designation.

کلیدواژه‌ها [English]

  • Submerged Hydraulic Jump
  • Submergence Ratio
  • Pressure Fluctuation Rate
  • Transducer
Abdulkhader, M. H. & Elango, K. 1974. Turbulent pressure field beneath a hydraulic jump. Journal of Hydraulic Research. 12(4), 469-489.
Abrishami, J. & Hoseyni M. 2017. Open channel hydraulics, Imam Reza University Press, Mashhad, Iran (In Persian).
Akbari, M. E., Mittal, M.K. & Pande, P.K. 1982. Pressure fluctuations on the floor of free and forced hydraulic jumps. Conf. on the Hydraulic Modeling of Civil Eng. Struc, England. 87-96.
Bakhmateff, B.A. 1962. The hydraulic jump in sloped channels. Transactions of ASME, 60, 111-118.
Chaudhry, M. H. 2008. Open-channel flow, Springer Science+Business Media, LLC, New York.
Elder, R. A. 1961. Model-prototype turbulence scaling, Proc. 9th Convention of IAHR, Dubrovnik, Yogoslavia, 24-31.
Farhoudi, J. and Sadat-Helbar, S. M. 2010. Pressure fluctuation around chute blocks of SAF stilling basins. Journal of Agricultural Science and Technology, 12, 203-212.
Fiorotto, V. & Rinaldo, A. 1992a. Fluctuation uplift and lining design in spillway stilling basins. Journal of Hydraulic Engineering, 118(4), 578-596.
Fiorotto, V. & Rinaldo, A. 1992b. Turbulent pressure fluctuations under hydraulic jumps. Journal of Hydraulic Research, 30(4), 499-520.
IPBO. 2008. Guideline for hydraulics of water treatment plant. Iran Plan and Budget Organization, No. 436, Tehran, Iran. (In Persian)
Kindsvater, C.E. 1944. Hydraulic jump in sloping channels. Trans. ASCE, 109, 1107-1154.
Liu, P. Q. & Li, A. H. 2007. Model discussion of pressure fluctuations propagation within lining slab joints in stilling basins. Journal of Hydraulic Engineering, 133(6), 618-624.
Lopardo, R. A. & Henning, R. E. 1985. Experimental advances on pressure fluctuations beneath hydraulic jumps. Proceedings of the 21st IAHR Congress, Melbourne, Australia. 3, 633-638.
Lopardo, R. A. & Solari, H. G. 1980. Pressure fluctuations beneath free hydraulic jump. Proc. 9th Congress of the Latin American Hydraulica, International Association of Hydraulic Research, 1, 77-89.
Marques, M. G., Drapeau, J. & Verrette, J. L. 1997. Pressure fluctuation in a hydraulic jump. Brazilian Journal of Water Resources, 2(2), 45-52.
Marques, M. G., Drapeau, J. and Verrette, J. L. 2004. Macro turbulence analysis of energy dissipation structures through varying pressures and levels. Brazilian Journal of Water Resources, 9, 127-153.
Toso, J. & Bowers, E. C. 1988. Extreme pressure in hydraulic jump stilling basin. Journal of Hydraulic Engineering, 114, 829-843.
Wang, H., Felder, S. & Chanson, H. 2014. An experimental study of turbulent two-phase flow in hydraulic jumps and application of a triple decomposition technique. Experiments in Fluids, 55(7), p.1775.
Wang, H., Felder, S. and Chanson, H., 2014. An experimental study of turbulent two-phase flow in hydraulic jumps and application of a triple decomposition technique. Experiments in Fluids, 55(7), 1775-1787