Investigation of Kinetics and Equilibrium of Lead-Absorbing Process by Magnetic Activated Carbon Powder with Fe$_3$O$_4$ Nanoparticles from Aqueous Solutions

Kh. Payandeh1, S. Ghasemi2

1. Assist. Prof., Department of Soil Science, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
 (Corresponding Author) Payandeh426@gmail.com
2. PhD Student, Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

(Received Jan. 29, 2018 Accepted May 29, 2018)

To cite this article:

Abstract
The combination of magnetic nanoparticles with other adsorbents not only does not affect their magnetic properties, but also leads to the formation of adsorbents that improve the refining process. The aim of this study was synthesis of magnetic activated carbon by Fe$_3$O$_4$ and investigation of its efficiency in adsorption of Lead from aqueous solutions. Magnetic adsorbent prepared by the method of sequestration and physical characteristics and structure of synthesized absorbent were determined by XRD and TEM. To remove the Lead from aqueous solutions, the Box-Behnken design (BBD) of response surface methodology (RSM) was employed for optimizing all parameters affecting the adsorption process. The studied parameters were pH (5-9), temperature (25-45 °C) and the amount of adsorbent (0.5-2 g). 15 experimental runs were calculated by using BBD. The optimal condition for removal of Lead by synthesis of magnetic activated carbon by Fe$_3$O$_4$ nanoparticles was pH=7, 450 °C temperature and 2 g of adsorbent. Kinetic studies of the adsorption process specified the efficiency of the pseudo second-order kinetic model and showed the optimal time was 15 min, respectively. The maximum percentage of Lead removed after 90 min was 86.87%. The adsorption isotherm was well-fitted to Longmire model. The study showed that magnetic activated carbon has a high potential for Lead removal. Therefore, it is believed that magnetized active carbon by keeping its physical and surface properties could be a suitable method to solve some related problems including separation and filtration.

Keywords: Activated Carbon, Aqueous Solutions, Lead, Removal, Nanoparticles.
بررسی سینتیک و تعادل فرآیند جذب سرب توسط پودر کربن فعال MgO-Fe₃O₄ از محلول‌های آبی

خودشان پایانه ۱، صادق قاسمی ۲

1) استادیار گروه گازشناختی، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
2) دانشجوی دکتری، پژوهشگران جوان و نخبگان، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

پایه پرداخت

چکیده

ترکیب تانداران مغناطیسی با سایر جاذبه‌ها که نه تنها تأثیری بر خواص مغناطیسی را نشان می‌دهد بلکه نیز به ایجاد جاذبه‌های می‌سوزد که قابل تصفیه و اصلاح کرده و بهبود می‌بخشند. هدف از این پژوهش سنتز کربن فعال مغناطیسی اکسید آلی مغناطیسی Fe₃O₄ در برای حذف گاز سرب لزج در محیط‌های آبی پودر. جاذب مغناطیسی با استفاده از روش هیترمپرسی اماده شد و میزان سختی و ساختاری آن با روش‌های TEM و XRD، آماده‌کردن آن را بررسی کرد. برای بهبود سازی منجره، PH، فشار تنشی، حسینی‌فر یا آزمایش‌های آن را به منظور روش اندازه‌گیری مدل باکس نتیجه داد. کاربرد پایه‌پرداخت مدل آزمایشی به منظور روش اندازه‌گیری مدل باکس نتیجه داد. کاربرد پایه‌پرداخت مدل آزمایشی به منظور روش اندازه‌گیری مدل باکس نتیجه داد. کاربرد پایه‌پرداخت مدل آزمایشی به منظور روش اندازه‌گیری مدل باکس نتیجه داد. کاربرد پایه‌پرداخت مدل آزمایشی به منظور روش اندازه‌گیری مدل باکس نتیجه داد. کاربرد پایه‌پرداخت مدل آزمایشی به منظور روش اندازه‌گیری مدل باکس نتیجه داد. کاربرد پایه‌پرداخت مدل آزمایشی به منظور روش اندازه‌گیری مدل باکس نتیجه داد. کاربرد پایه‌پرداخت مدل آزمایشی به منظور روش اندازه‌گیری مدل باکس نتیجه داد. کاربرد پایه‌پرداخت مدل آزمایشی به منظور روش اندازه‌گیری مدل باکس

واژه‌های کلیدی: کربن فعال، محلول آبی، سرب، جاذب، نانوذده

1) مقدمه

امروزه آندولگی می‌تواند آب به فلزات سنگین، ترکیبات رادیوتکنویک و ترکیبات آلی و غیر آلی یکی از مشکلات اساسی در محیط‌زیست بشر محسوب شود. فلزات سنگین به دلیل بالای تنها بودن و آثار زیان‌بار فیزیولوژیک بای جانداران، اهمیت ویژه را در آلودگی محیط زیست دارند (Cay et al., 2004). از این تخصصی تجربه‌ها فلزات سنگین در محیط زیست، صنعتی شدن سریع و افزایش جمعیت

Journal of Water and Wastewater
Vol. 30, No. 2, 2019
مجله آب و فاضلاب
دوره ۳۰، شماره ۲، سال ۱۳۹۸

dx.doi.org/10.22093/wwj.2018.117362.2613
در میان مورد استفاده قرار دادن و راندن‌های بالا برای تورم، (Yang et al., 2018, Badi et al., 2018) با توجه به موارد ذکر شده، این پژوهش با هدف رسیدن به روش‌های آزمایش‌گیری فعال سرب از محلول‌های آبی انجام شد. برای این کار از مغناطیسی کردن کربن آبی آب و دوش مورد استفاده شد.

- میزان و روشهای

در پژوهش برای سنتز کربن فعال مغناطیسی، شاهد با آن‌های صفر از روش متریپی استفاده شد. به‌وسیله میکروسکوپ پیکریم (PAC) در 3000 میلی لیتر از تریلیک 65 درصد آفوده و به میکروسکوپ هم‌لایه محلول بهم‌آمیخته 3 ساعت در داخل دستگاه حمام شکمی‌زدار با دمای 80 درجه سیلسیوس قرار داده شد. سپس محلول قیف‌دار بوده و حرارت محلول به 3000 میلی لیتر محلول نیترات آهن فیکس‌گر Fe(NO3)3.9H2O g/L یک مایده با یک مایده محلول نیترات آهن فیکس‌گر Fe(NO3)3.9H2O g/L در داخل دستگاه حمام شکمی‌زدار به کمک دستگاه سانتریفیوژ صاف شد. در مرحله بعد نمونه در داخل کوره الکتریکی با گاز نیترژن طی مدت 3 ساعت و دما 750 درجه سیلسیوس قرار داده شد. در نهایت جابجایی نمونه به درون دستگاه شکمی‌زدار و در محیط آبی‌زیستی (باید آب مخلوط شود) داده شد. سپس در مدت 100 ثانیه در دمای 300 مایده استفاده شد. (Liu et al., 2010). همچنین ترکیبی مایده با روش‌های XRD و TEM اندازه‌گیری قرار گرفت.

1- آزمایشی جذب به روش بالاستار

این پژوهش با هدف پژوهش در میان‌بودن آزمایشگاهی و بر اساس مدل سطح با پان شرح باکس بهینه‌سازی شد. از نرم‌افزار به میکروسکوپ بهینه سازی pH مایده و محلول مناسب در طراحی آزمایش‌های استفاده شد. این ترکیب به بهینه منظور مایده دیگی‌اند. Minitab17

1 Transmission Electron Microscope (TEM)
2 X- ray Diffraction (XRD)
3 Box- Behnken

مجله آب و فاضلاب
دوره 30، شماره 2، سال 1398

Journal of Water and Wastewater
Vol. 30, No. 2, 2019
شکل 1 - الگوی پراش نگاشت پرتو ایکس مربوط به نمونه پودری سنترز کریستالی Fe₃O₄ با استفاده از دستگاه XRD نشان داده که گروه با تابش Cu، جریان ۴۰۰ mA و ولتاژ ۴۰ kV

جدول ۱. مقدار متغیرهای مستقل

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>Symbol</th>
<th>Low level (-1)</th>
<th>Medium level (0)</th>
<th>High level (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>X₁</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>X₂</td>
<td>25</td>
<td>35</td>
<td>45</td>
</tr>
<tr>
<td>Adsorbent value (g)</td>
<td>X₃</td>
<td>0.5</td>
<td>1.25</td>
<td>2</td>
</tr>
</tbody>
</table>

شکل ۲- آزمایش‌های حذف سرب به‌منظور تعیین پارامترهای‌به‌منظور

پیگیری در این مرحله با استفاده از نمک نیترات سرب ابتدا محلول‌های پیک

pH لیتری با غلظت ۲ میلی‌گرم در لیتر با آب دیوئیز تهیه که محلول‌ها به سیل‌سیکلک سیابی با سود بر روی مقادیر مورد نظر (۷ یا ۵) با استفاده از دستگاه مقدار مورد نظر نیاز از جنابی (۱/۵ یا ۲) گرم) با ترازوی

ورزش و پذیرش محلول اضافه شده.

شکل ۲- بررسی ویژگی‌های ساختاری جادب مغناطیسی‌شده

شکل ۲ ویژگی‌های ساختاری جادب مغناطیسی‌رو در تصویر نشان می‌دهد که گروه این موضوع است که نتیجه‌ای از آزمایشات آماده (III) است. ساختار مکعبی داشته و دارای قطر متوسط ۳۰ نانومتر.
سطح نمونه‌های فاصله‌بندی‌های متغیر و شیب بهینه برای آن‌ها مورد نظر مشخص شد.

3-3 بررسی ضرایب رگرسیون و پیش‌بینی ANOVA تأثیر آزمایش‌های طراحی شده با مدل پاکس-بنکن

در جدول ۲ ضرایب رگرسیون کد شده و سطح معنی‌داری پیش‌بینی شده، توسط مدل برای حذف سرب با پودر سنتزی کریم فعال با ناواند آکسید آهن مغنی‌سی نشان داده شده است. همچنین ضریب همبستگی R²،‏که همبستگی بین نتایج را نشان می‌دهد، با توجه به مقدار R² فقط حدود ۱/۱۳ درصد از تغییرات بر مدل قابل پیش‌بینی نبود.

طبق نتایج رگرسیون پیش‌بینی شده، اثر متغیرهای مقدار جاذب X₁*X₁، و آخر مقادیر X₃ و (p = 0.032)، X₄ و (p = 0.004) X₅ در محدوده اطمینان ۹۵ درصد دارد. مدل معادله جمله‌ای که شده در جدول ۲ به‌دست آمده، توسط نرم‌افزار Minitab ۱۷، نرم‌افزاری که در زیر نشان داده شده است، به ریاضیات طراحی شده است.

\[
Y = 74.63 - X₁ + 5.69 X₃ + 2.64 X₂ - 4.84 X₁*X₁ - 2.07 X₃*X₃ - 1.01 X₄*X₄ - 0.12 X₅*X₅ + 1.18 X₂*X₅ - 0.6 X₃*X₃
\]

جدول ۲ - طراحی مدل پاکس-بنکن برای حذف سرب با پودر سنتزی کریم فعال با ناواند آکسید آهن مغنی‌سی

<table>
<thead>
<tr>
<th>The experiment number</th>
<th>pH</th>
<th>Temperature</th>
<th>Adsorbent value</th>
<th>Removal percentage</th>
<th>The predicted removal percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>35</td>
<td>1.25</td>
<td>75.5</td>
<td>74.63</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>35</td>
<td>1.25</td>
<td>75.8</td>
<td>74.63</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>45</td>
<td>1.25</td>
<td>70.5</td>
<td>69.23</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>25</td>
<td>0.5</td>
<td>68.40</td>
<td>66.31</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>35</td>
<td>0.5</td>
<td>66.30</td>
<td>62.91</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>25</td>
<td>2</td>
<td>76.50</td>
<td>75.20</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>45</td>
<td>0.5</td>
<td>67.80</td>
<td>69.10</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>35</td>
<td>0.5</td>
<td>61.20</td>
<td>61.16</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>25</td>
<td>1.25</td>
<td>64.70</td>
<td>95.96</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>25</td>
<td>0.5</td>
<td>60.5</td>
<td>62.62</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>45</td>
<td>2</td>
<td>81.40</td>
<td>79.27</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>35</td>
<td>1.25</td>
<td>74.50</td>
<td>74.53</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>45</td>
<td>1.25</td>
<td>72.59</td>
<td>74.63</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>5</td>
<td>0.5</td>
<td>68.90</td>
<td>72.9</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
<td>45</td>
<td>1.25</td>
<td>71.50</td>
<td>73.58</td>
</tr>
</tbody>
</table>
جدول 3- ضرایب رگرسیون یکپارچه شده برای حذف سرب با پودر سنتزگرین غلظتی

<table>
<thead>
<tr>
<th>Term</th>
<th>Coefficient</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>74.63</td>
<td>0.000</td>
</tr>
<tr>
<td>X_1</td>
<td>-1</td>
<td>0.427</td>
</tr>
<tr>
<td>X_2</td>
<td>2.64</td>
<td>0.032</td>
</tr>
<tr>
<td>X_3</td>
<td>5.69</td>
<td>0.004</td>
</tr>
<tr>
<td>$X_1^2X_1$</td>
<td>-4.84</td>
<td>0.036</td>
</tr>
<tr>
<td>$X_2^2X_2$</td>
<td>-1.01</td>
<td>0.577</td>
</tr>
<tr>
<td>$X_3^2X_3$</td>
<td>-2.07</td>
<td>0.280</td>
</tr>
<tr>
<td>X_1^2</td>
<td>-1.18</td>
<td>0.505</td>
</tr>
<tr>
<td>X_2^2</td>
<td>-0.12</td>
<td>0.942</td>
</tr>
<tr>
<td>X_3^2</td>
<td>-0.60</td>
<td>0.729</td>
</tr>
</tbody>
</table>

پر اساس ضرایب رگرسیون گزارش شده و معادله به‌دست آمده، می‌توان نتیجه گرفت که معیارهای مقدار ظرفیتی دما و pH یا تریپ بیشترین تأثیر را بر میزان حذف سرب دارند. به حذف جمله که در محدوده دارای قرار ندارند، معادله مدل توصیه‌ای به صورت زیر تعریف می‌شود:

$$Y = 74.63 + 5.69X_3 + 2.64X_2 - 4.84X_1$$

Table 3. Regression coefficients predicted for removal of lead with synthesis of magnetic activated carbon by Fe3O4 nanoparticles

در مقاله مورد بررسی قرار گرفته که مقدار ظرفیتی دما و pH یا تریپ بیشترین تأثیر را بر میزان حذف سرب دارند. به حذف جمله که در محدوده دارای قرار ندارند، معادله مدل توصیه‌ای به صورت زیر تعریف می‌شود:

$$Y = 74.63 + 5.69X_3 + 2.64X_2 - 4.84X_1$$
Fig. 3. Plot of response surface and contour between pH (X_1) and temperature (X_2) with the constant amount of nanoparticles (X_3) in the middle of 1.25 for the removal of lead

Fig. 4. Plot of response surface and contour between pH (X_1) and amount of nanoparticles (X_3) with constant temperature (X_2) in the middle of 35 for the removal of lead

Fig. 5. Plot of response surface and contour between temperature (X_2) and amount of nanoparticles (X_3) with the constant pH (X_1) in the middle of 7 for the removal of lead
نیازهای بعد از گذشته زمان 90 دقیقه، شرایط تبادل به‌دست نیامد و به‌عنوان دیگر برای رسیدن به شرایط تبادل، زمان تبادل طولانی‌تر لازم است. با اجرای تابعه بست‌آمده با انجام آزمون آماری آنالیز واریانس و مقایسه با روش Tukey، چنین که با افزایش زمان تبادل حذف جزیئری، اما زمان 15 دقیقه به‌دارایتی و اینکه از آن اختلاف معناداری نداشت و به‌عنوان زمان تبادل به‌بیان مناسب برای حذف سرب در نظر گرفته شد. فاصله و همکاران در پژوهش زمان تبادل جدید بیش از 20 دقیقه به‌دارایتی و نتایج آوردن (Ghasemi et al., 2017) همچنین یوپیدا و همکاران زمان تبادل جذب بیان‌های فازات سنگی در نواحی ذرات Fe3O4 9 کامکز از (Uheida et al., 2006) 20 دقیقه گزارش نمودند.

6-7 بررسی تأثیر غلظت اولیه سرب بر حذف و ظرفیت جذب سرب مقادیر ماده جذب شده با افزایش هگر گرم جاذب (ظرفیت جذب) به‌صورت معادله زیر تعیین می‌شود

\[q_e = (C_0 - C_e) \times \frac{V}{W} \]

که در آن

\[C_0 \] غلظت اولیه ماده جذب شونده، بر حسب میلی‌گرم در لیتر، \[C_e \] غلظت ماده جذب شونده بعد از جذب بر حسب میلی‌گرم در لیتر، \[V \] حجم محلول بر حسب لیتر و \[W \] وزن ماده جذب بر حسب گرم است.

نتایج حاصل از بررسی تأثیر غلظت اولیه سرب بر روی جذب در شکل 7 نشان داده شده است. نتایج نشان داد که با افزایش غلظت اولیه سرب، مقادیر جذب و روند جذب شده به‌بیانی هگر گرم جاذب (ظرفیت جذب) افزایش می‌یابد. در گسترش‌های جاذب نابودی، غلظت ورودی سرب را می‌توان در محدوده نرمال ممکن را به‌عنوان نریو محرک غله‌گیر کننده با مقاومتی ناشی از ترکیب آن برای افزایش غلظت سرب در محلول، ظرفیت جذب سرب افزایش می‌یابد. این امر باعث می‌شود در پژوهشی با عنوان حذف سرب با استفاده از نانوپریکر کوبکسی روي چهارم است. نتایج مشاهده که ارتباط بین و همکاران و سایر پژوهش‌گران در این سه مقاله جغرافیا-شیمی است

(Choińska-Pulit et al., 2018, Babu et al., 2018)

3-3-6-7 نتایج بررسی اثر زمان تبادل با پودر کربن سنتز شده با اکسید آهن مغناطیسی

نتایج مربوط به اثر زمان تبادل بر روی فرآیند حذف سرب با پودر کربن سنتز شده با اکسید آهن مغناطیسی در شرایط بهینه، در شکل 9 نشان داده است. با توجه به نتایج به‌دارایتی و نمودار رسم شده، نتیجه گرفت که با افزایش زمان تبادل، بیش از 20 دقیقه فرآیند بیشتری دردست نموده است. با اکسید آهن مغناطیسی جذب شونده، همچنین از نتایج به‌دارایتی می‌تواند که دکتر میزان حذف سرب با پودر کربن سنتز شده با اکسید آهن مغناطیسی در 15 دقیقه 10 صورت گرفته و است. به‌عبارت دیگر فرآیند حذف سرب در بررسی این یافته است که در این دیدگاه سریع‌تر بوده و پس از آن جذب با سرعت کمتری ادامه می‌یابد. دلیل این امر این است که در این دیدگاه اکتشاف شده و در سطح جذب بیشتر بوده است. با اکتشاف شدن این مکانیسم به تدریج اشغال شده و میزان آن کاهش می‌یابد. اما در هیچ یک از

\[\text{Removal} (\%) = \frac{C_0 - C_e}{C_0} \times 100 \]

\[\text{Time (min)} \]

\[\text{Fig. 6. Effect of different contact times on removal percentage of lead with synthesis of magnetic activated carbon by Fe3O4 nanoparticles in optimum conditions} \]

دروده، جهت پژوهش‌های نتایج در این مقاله مطرح کرده و در وسایل آزمایشگاهی همکاران در پژوهش‌های کربنی و سایر پژوهش‌گران در این سه مقاله جغرافیا-شیمی است

(Choińska-Pulit et al., 2018, Babu et al., 2018)
çe به شکل زیر تعریف شد (Gupta and Babu, 2009)

\[
R_L = \frac{1}{1 + K_l \times C_e}
\]

(5)

جدول 4- نتایج محاسبات ایزوتروم لاکمیر

<table>
<thead>
<tr>
<th>Equation line</th>
<th>q_m</th>
<th>K_l</th>
<th>R_l</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y=0.5272 X – 0.0854</td>
<td>11.709</td>
<td>0.161</td>
<td>0.235</td>
<td>0.9908</td>
</tr>
</tbody>
</table>

Fig. 7. Effect of the quantity of different initial concentration on the capacity and removal percentage of lead in optimum conditions

شکل 7- تأثیر مقدار غلظت‌های اولیه متفاوت بر ظرفیت درصد جذب سرب در شرایط بهینه (7= pH= 45 درجه سلسیوس و مقدار جاذب = 2 گرم) و زمان تماس 15 دقیقه

سلولاری از محلول آبی گزارش نمودند که افزایش غلظت آلاینده، رابطه مستقیمی با افزایش ظرفیت جذب دارد (Sharma et al., 2018)

جدول 3- مطالعات ایزوتروم‌های جذب سرب روی جاذب

<table>
<thead>
<tr>
<th>مطالعه</th>
<th>نتایج</th>
<th>افزایش غلظت</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jaafarzadeh et al., 2014</td>
<td>1- ایزوتروم فرندیج</td>
<td></td>
</tr>
</tbody>
</table>

Log \[q_e = \log K_p + \frac{1}{n} \log C_e \]

(6)

که در آن \[C_e \] غلظت جذب در غلظت واحد \(V/n \) به ازای واحد وزن چند جاذب بر حسب میلی‌گرم در گرم است. از نمودار خطی ایزوتروم، \[q_e \] که از معادله برای \(q_e = V/n \) برابر با تغییر می‌شود، اکثر \[q_e = V/n \] و \[K_p \] معادله برای \(q_e \) که به آن نامیده شده به ازای هر گرم چند جاذب بر حسب میلی‌گرم

\[
\frac{1}{q_e} = \frac{1}{q_m} + \frac{1}{V/n \times q_m \times K_p \times C_e}
\]

(7)

که در آن \[q_e \] مقدار جاذب شده به ازای هر گرم چند جاذب بر حسب میلی‌گرم

Table 4. Results of Langmuir isotherm calculations

بلینگر نوع ایزوتروم است. برای جذب مطلوب \(R_L < 1 \) برای جذب خاطی \(R_L = 0 \) برای جذب غیر قابل برگشت \(R_L \) است. (Bayramoglu et al., 2009)

نتایج حاصل از بررسی ایزوتروم لاکمیر در جدول ۴ نشان داده شده است. مقدار ۵۴/۲۳ و ضریب تبعیین ۰/۹۹۵۰ به دست آمده بلینگر تطبیق داده‌ها با ایزوتروم لاکمیر است.
8-2-3 Table 7. Kinetic results of the second-degree adsorption

<table>
<thead>
<tr>
<th>Equation line</th>
<th>K_2</th>
<th>q_e (calculated)</th>
<th>q_e (experiment)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y=0.1153$</td>
<td>0.0984</td>
<td>8.673</td>
<td>8.687</td>
<td>1</td>
</tr>
<tr>
<td>$X+0.1351$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8-2-3 Table 8. Results of Freundlich isotherm calculations

<table>
<thead>
<tr>
<th>Equation line</th>
<th>K_F</th>
<th>$1/n$</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y=1.399 X + 0.346$</td>
<td>2.218</td>
<td>1.399</td>
<td>0.9737</td>
</tr>
</tbody>
</table>

8-2-3 Table 6. Kinetic results of the first-degree adsorption

<table>
<thead>
<tr>
<th>Equation line</th>
<th>K_1</th>
<th>q_e (calculated)</th>
<th>q_e (experiment)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y=-0.0117 X +0.0543$</td>
<td>0.2383</td>
<td>0.8825</td>
<td>8.687</td>
<td>0.9688</td>
</tr>
</tbody>
</table>

8-2-3 Table 5. Results of Freundlich isotherm calculations

<table>
<thead>
<tr>
<th>Y</th>
<th>K_F</th>
<th>$1/n$</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y=1.399 X + 0.346$</td>
<td>2.218</td>
<td>1.399</td>
<td>0.9737</td>
</tr>
</tbody>
</table>

8-2-3 Table 4. Results of second-degree adsorption

<table>
<thead>
<tr>
<th>$Y=0.1153 X + 0.1351$</th>
<th>K_2</th>
<th>q_e (calculated)</th>
<th>q_e (experiment)</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0984</td>
<td>8.673</td>
<td>8.687</td>
<td>1</td>
</tr>
</tbody>
</table>

(Giraldo et al., 2013)

(Kumar et al., 2012)
همچنین استفاده از ژاکت‌های مغناطیسی شده علاوه بر جداسازی آسیان و سریع جذب از محیط‌های آبی در مقایسه با سایر میکرو‌شاد بی‌عموی به دلیل سطح ویژه بالا و مقاومت پرکندگی داخلی کم، عملکرد بهتری دارند. در نهایت می‌توان از این نمود که ژاکت‌های مغناطیسی پتانسیل بالایی برای حذف آلاینده‌های مربوط به سرب دارد. لذا می‌توان از آن برای حذف چنین آلاینده‌هایی از محیط‌های آبی استفاده نمود.

5- قدردانی
این مقاله از طرح پژوهشی درون دانشگاهی با عنوان "بررسی Fe3O4 کارایی سنتز پودر قلمی مغناطیسی شده با نانوذرات جهت حذف توتوناتالیسی کادمیوم و سرب از محلول‌های آبی سنتیک با روش پاسخ صحط مدل باکس-بینکست* استخراج شده و هزینه این توسط دانشگاه آزاد اسلامی واحد اهواز تأمین شده است که به این وسیله قدردانی می‌شود.

References

