حذف کروم شش ظرفیتی از محیط‌های آبی با استفاده از جذب بر روی رزین آنیونی بازی قوی: مطالعه تعادلی و سینتیکی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیئت علمی مرکز تحقیقات بهداشت محیط ، دانشگاه علوم پزشکی کردستان

2 دانشیار گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی همدان

3 استاد گروه شیمی- فیزیک، دانشکده علوم، دانشگاه بوعلی سینای همدان

4 دانشیار، مرکز تحقیقات بهداشت محیط ، دانشگاه علوم پزشکی کردستان

5 کارشناسی ارشد مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی کرج

چکیده

کروم از جمله فلزات سنگین موجود در پساب صنایع بوده که به‌شدت برای انسان و محیط‌زیست سمّی است. در این مطالعه حذف کروم شش ظرفیتی با استفاده از جذب بر روی رزین آنیونی بازی قوی با تغییرات pH، زمان تماس، غلظت اولیه جاذب و غلظت اولیه کروم شش ظرفیتی در سیستم ناپیوسته مورد بررسی قرار گرفت. همچنین نتایج حاصل از آزمایش‌ها بر روی مدل‌های ایزوترمی فروندلیچ و لانگمیر و مدل‌های سینتیکی شبه درجه اول، شبه درجه دوم و شبه درجه اول اصلاح شده مورد مطالعه قرار گرفت. نتایج نشان داد که کارایی حذف کروم شش ظرفیتی با افزایش pH و غلظت اولیه کروم کاهش یافت. در صورتی‌که با افزایش غلظت اولیه جاذب و زمان تماس، کارایی حذف افزایش یافت. در زمان تماس120 دقیقه، غلظت اولیه جاذب ml g/100 0/2 و غلظت اولیه کروم شش ظرفیتی 30 میلی‌گرم در لیتر با افزایش pH از 3 به 11، کارایی حذف از 93/56 به 69/12 درصد کاهش یافت. نتایج نشان داد که با افزایش زمان تماس از 5 به 120دقیقه، کارایی حذف از 39/51 درصد به 94/41 درصد افزایش یافت. نتایج حاصل از مطالعات تعادلی مشخص ساخت که فرایند جذب کروم شش ظرفیتی بر روی رزین آنیونی بازی قوی از مدل سینتیکی شبه درجه دو و مدل ایزوترمی لانگمیر پیروی می‌کند. در مجموع نتایج حاصل از انجام آزمایش‌ها مشخص ساخت که می‌توان از فرایند جذب بر روی رزین آنیونی به‌عنوان یک روش مؤثر و سریع در حذف کروم شش ظرفیتی از محلولهای آبی استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Removal of Chromium by Using of Adsorption onto Strong Base Anion Resin: Study of Equilibrium and Kinetic

نویسندگان [English]

  • Mehdi Shirzad Siboni 1
  • Mohammad Taghi Samadi 2
  • Saeed Azizian 3
  • Afshin Maleki 4
  • Mansour Zarrabi 5
1 . Faculty Member of Environmental Health Research Center, Kurdistan University of Medical Science, Kurdistan
2 Assoc. Prof., Faculty of Public Health, Hamadan University of Medical Science, Hamedan
3 Prof. of Physical-Chemistry, Faculty of Sciences, Bu-Ali Sina University, Hamadan
4 Assoc. Prof., Environmental Health Research Center, Kurdistan University of Medical Science, Kurdistan
5 M.Sc. of Environmental Health, Faculty of Public Health, Karaj University of Medical Science, Karaj
چکیده [English]

Chromium is one of the heavy metals that is found in industrial effluents and is very toxic for human and environment. In this work the removal of hexavalent chromium by using of adsorption onto strongly basic anion was investigated. Various parameters such as pH, initial hexavalent chromium concentration, contact time and resin dosage were studied. Experimental data were expressed by Langmiur and Freundlich isotherm Pseudo-first order, Pseudo-second order and modified Pseudo-first order kinetic models. The results showed chromium removal was increased by increase of contact time and resin dosage, while decreased by increase of pH and initial hexavalent chromium concentration. At contact time equal 120 min, resin dosage 0.2 g/100 ml and initial hexavalent chromium concentration of 30 mg/l, by increasing pH from 3 to 11, removal efficiency was decreased from 93.56 % to 69.12 %. In addition, by increasing contact time from 5 min to 120 min, removal efficiency was increased from 39.51 % to 94.41 %. The results also showed hexavalent chromium sorption follows Langmiur isotherm model. Pseudo second order models best describe chromium removal by using of adsorption onto strongly basic anion resin. The results revealed that removal of hexavalent chromium from aqueous solution by using of adsorption onto stringly basic onion resins can be done quick and effective.

کلیدواژه‌ها [English]

  • Hexhavalent Chromium
  • resin
  • Kinetic Model
  • Isotherm model
  • Adsorption
Mahvi, A.H., Naghipour, D., Vaezi, F., and Nazmara, S. (2005) Teawaste as an adsorbent for heavy metal removal from industrial wastewaters American J. of Applied Sciences 2, 272-275
Fiol, N., Villaescusa, I., Miralles, N.U., Poch, J., and Serarols, J. (2006) Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. eparation and Purification Technology 50, 122-140
Gupta, V.K., Shrivastava, A.K., and Jain, N. (2001) Biosorption of chromium (VI) from aqueous solutions by green algae spirogyra species Water Research 25, 4079-4090
Raj, C., and Anirudhan, T.S. (1997) Chromium (VI) adsorption by sawdust: Kinetics and equilibrium Indian J. of Chemical Technology 4, 226-228
Park, S., and Jung, W.Y. (2001) Removal of chromium by activated carbon fibers plated with copper metal Carbon Science 2, 15-21
WHO. (1992) Guidelines for drinking water quality 2nd Ed., World Health Organization, USA
http://www.isiri.org/std/1052.htm (Sep. 2009) http://www.isiri.org/std/1052.htm http://www.isiri.org/std/1052.htm
Sun, J.M., Shang, C., and Huang, J.C. (2003) Co-removal of hexavalent Chromium through copper precipitation in synthetic wastewater American J. of Applied Sciences 32, 4281-4287
Hafeza, A.I., Manharawy, M.S., and Khedr, M.A. (2002) RO membrane removal of unreacted chromium from spent tanning effluent A pilot-scale study Desalination 144, 237-242
Ribeiro, A.B., Mateus, E.P., Ottosen, L.M., and Nielsen, G.B. (2000) Electrodialytic removal of Cu, Cr, and as from chromated copper arsenate-treated timber waste Environmental Science Technology 34, 784-788
Abrowski, D., Hubicki, Z., Podko Scielny, P., and Robens, E. (2004) Selective of the heavy metal ions from waters and industrial wastewater by ion-exchange method Chemosphere 56, 91-106
Selvi, K., Pattabhi, S., and kadirvelu, K. (2001) Removal of Cr (VI) from aqueous solutions by adsorption onto activated carbon Bioresource Technology 80, 87-89
Sharma, D.C., and Forster, C.F. (1993) Removal of hexavalent chromium using shagnum moss peat Water Research 27, 1201-1208
Ranganathan, K. (2000) Chromium removal by activated carbons prepared from Casurina equisetifolia leaves Bioresource Technology 73, 99-103
Ahmad, R. (2004) Sawdust: Cost effective scavenger for the removal of chromium(iii) ions from aqueous solutions Water, Air, and Soil Pollution 163, 169-183
Abo-Farhaa, S.A., Abdel-Aala, A. Y., and Garamon, S. E. (2009) Removal of some heavy metal cations by synthetic resin pyrolite C100 Hazardous Materials 169, 190-194
Glesceria, L. A. E., and Eaton, A.D. (1998) Standard methods for the examination of water and wastewater 20th Ed., APHA., WEF., USA.
Heidari, A., Younesi, H., and Mehraban, Z. (2009) Removal of Cd(II), Ni(II), and Pb(II) Ions in an aqueous solution by chemically modified nanoporous MCM-41 J. of Water and Wastewater 73, 25-33
Babarinde, N.A.A., Oyesiku, O.O., Oyebamiji, J., and Abalola, B. (2008) Isothermal and thermodynamic studies of the biosorption of Zn (II) Ions by calymperes erosum J. of Applied Sciences Research 4, 716-721
Azizian, S. (2004) Kinetics models of sorption: A theoretical study J. of Colloids and Interface Science 276, 47-52
Yang, X. (2005) Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon J. of Colloids and Interface Science 287, 25-43
Azizian, S., and Bashiri, H. (2008) Adsorption kinetics at solid/solution interface: Statistical rate theory at initial times of adsorption and close to equilibrium., Langmuir The ACS J. of Surface and Colloids 24, 11669-11676
Gutsanu, V., Drutsa, R., and Rusu, V. (2001) Sorption of Fe(III) containing ions on strongly basic anion exchangers AV-1 7 and Varion-AD Reactive and Functional Polymers 46, 203-211
Rengaraj, S., Joo, C.K., Kim, Y., and Jongheop, Y. (2003) Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H Hazardous Materials 102, 257-275
Petruzelli, D., and Passino, R. (1995) Ion exchange process for choromium and recovery from tannery wastes India Engineering Chemichal Research 34, 2612-2617
Cavaco, S., and Fernandes, S. (2007) Removal of chromium from electroplating industry effluents by ion exchange resins J. of Hazardous Materials 144, 634-638