الگوریتم بهینه‌سازی گروه ذرات دینامیکی جهشی برای طراحی شبکه‌های توزیع آب

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای گروه مهندسی مکانیک- تبدیل انرژی، دانشگاه صنعتی ارومیه، ارومیه، ایران

2 استاد گروه مهندسی مکانیک- تبدیل انرژی، دانشگاه صنعتی ارومیه، ارومیه، ایران

3 دانشیار گروه مهندسی مکانیک- تبدیل انرژی، دانشکده فنی، دانشگاه ارومیه، ارومیه، ایران

4 دانشیار گروه مهندسی برق، دانشگاه صنعتی ارومیه، ارومیه، ایران

چکیده

این مقاله کاربرد یک نسخه جدید از الگوریتم بهینه‌سازی گروه ذرات را برای طراحی شبکه‌های توزیع آب پیشنهاد می‌کند. مسئله بهینه‌سازی طراحی شبکه‌های توزیع آب حلقوی، به‌عنوان یک مسئله بهینه‌سازی NP-Hard شناخته شده است که نمی‌تواند به‌آسانی توسط روش‌های سنتی بهینه‌سازی حل شود. در این مقاله، برای افزایش سرعت همگرایی الگوریتم PSO، مفهوم اندازه گروه دینامیکی به‌کار گرفته شد. در این سیاست، اندازه گروه به‌صورت دینامیکی مطابق با تعداد تکرار الگوریتم تغییر می‌کند. علاوه بر آن، یک رویه جهش جدید معرفی می‌شود تا خاصیت تنوع‌طلبی الگوریتم PSO را افزایش داده و به‌رهایی از کمینه‌های محلی کمک کند. این نسخه جدید PSO، الگوریتم بهینه‌سازی گروه ذرات دینامیکی جهشی است. الگوریتم پیشنهادی برای حل مسائل طراحی شبکه‌های توزیع آب به‌کار گرفته شد و دو مثال کاربردی و مقایسه‌ای ارائه شد تا کارایی و مؤثر ‌بودن روش پیشنهادی را نشان دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Dynamic Mutated Particle Swarm Optimization Algorithm to Design Water Distribution Networks

نویسندگان [English]

  • Kazem Mohammadi- Aghdam 1
  • Iraj Mirzaei 2
  • Nader Pourmahmood 3
  • Mohammad Pourmahmood-Aghababa 4
1 PhD Student of Energy Conversion, Dept. of Mechanical Engineering, Urumia University of Technology, Urmia, Iran
2 Prof. of Energy Conversion, Dept. of Mechanical Engineering, Urumia University of Technology, Urmia, Iran
3 Assoc. Prof. of Energy Conversion, Dept. of Mechanical Engineering, University of Urmia, Iran
4 Assoc. Prof. of Electrical Engineering, Urumia University of Technology, Urmia, Iran
چکیده [English]

This paper proposes the application of a new version of the heuristic particle swarm optimization (PSO) method for designing water distribution networks (WDNs). The optimization problem of looped water distribution networks is recognized as an NP-hard combinatorial problem which cannot be easily solved using traditional mathematical optimization techniques. In this paper, the concept of dynamic swarm size is considered in an attempt to increase the convergence speed of the original PSO algorithm. In this strategy, the size of the swarm is dynamically changed according to the iteration number of the algorithm. Furthermore, a novel mutation approach is introduced to increase the diversification property of the PSO and to help the algorithm to avoid trapping in local optima. The new version of the PSO algorithm is called dynamic mutated particle swarm optimization (DMPSO). The proposed DMPSO is then applied to solve WDN design problems. Finally, two illustrative examples are used for comparison to verify the efficiency of the proposed DMPSO as compared to other intelligent algorithms.

کلیدواژه‌ها [English]

  • Water Distribution Network
  • Particle Swarm Optimization (POS)
  • Dynamic Swarm
  • Mutated Particle
  • Hydraulic Conditions
  1. Yates, D.F., Templeman, A.B., and Boffey, T.B. (1984). “The computational complexity of the problem of determining least capital cost designs for water supply networks.” J. of Eng. Optimiz., 7, 143-145.
  2. Schaake, J.C., and Lai, D. (1969). Linear programming and dynamic programming applied to water distribution network design, MIT Hydrodynamics Lab Report, 116.
  3. Alperovits, E., and Shamir, U. (1977). “Design of optimal water distribution systems.” J. of Water Resour Res., 13(6), 885-900.
  4. Varma, K., Narasimhan, S., and Bhallamudi, S.M. (1997). “Optimal design of water distribution systems using NLP method.” J. of Environ. Eng., 123, 381-388.
  5. Gogna, A., and Tayal, A. (2013). “Metaheuristics: Review and application.” J. of Experimental and Theoretical Artificial Intelligence, 25(4), 503-526.
  6. Kavousi-Fard, A., and Kavousi-Fard, F. (2013). “A new hybrid correction method for short-term load forecasting based on ARIMA, SVR and CSA.” J. of Experimental and Theoretical Artificial Intelligence, 25(4), 559-574.
  7. Moradinasab, N., Shafaei, R., Rabiee, M., and Ramezani, P. (2013). “No-wait two stage hybrid flow shop scheduling with genetic and adaptive imperialist competitive algorithms.” J. of Experimental and Theoretical Artificial Intelligence, 25, 207-225.
  8. Pellegrini, P., and Favaretto, D. (2012). “Quantifying the exploration performed by metaheuristics.” J. of Experimental and Theoretical Artificial Intelligence, 24, 247-266.
  9. Romdhane, L.B., and Ayeb, B. (2011). “An evolutionary algorithm for abductive reasoning.” J. of Experimental and Theoretical Artificial Intelligence, 23, 529-544.

10. Sun, C., Zhao, H, and Wang, Y. (2011). “A comparative analysis of PSO, HPSO, and HPSO-TVAC for data clustering.” J. of Experimental and Theoretical Artificial Intelligence, 23, 51-62.

11. Meng, Z., Zou, B., Zeng, Y. (2012). “Considering direct interaction of artificial ant colony foraging simulation and animation.” J. of Experimental and Theoretical Artificial Intelligence, 24, 95-107.

12. Bolognesi, A., Bragalli, C., Marchi, A., and Artina, S. (2010). “Genetic heritage evolution by stochastic transmission in the optimal design of water distribution networks.” J. of Advance Eng. Software, 41, 792-801.

13. Banos, R., Gil, C., Reca, J., and Montoya, F.G. (2010). “A memetic algorithm applied to the design of water distribution networks.” J. of Appli. Soft. Comput., 10, 261-266.

14. Eusuff, M.M., and Lansey, K.E. (2003). “Optimization of water distribution network design using the shuffled frog leaping algorithm.” J. of Water Resour Plan Manage, 129, 210-225.

15. Tospornsampan, J., Kita, I., Ishii, M., and Kitamura, Y. (2007). “Split-pipe design of water distribution network using simulated annealing.” Int. J. of Comput. Inform. Syst. Sci. Eng., 1, 153-163.

16. Zecchin, A.C., Maier, H.R., Simpson, A.R., Leonard, M., and Nixon, J.B. (2007). “Ant colony optimization applied to water distribution system design: Comparative study of five algorithms.” J. of Water Resour Plan Manage, 133, 87-92.

17. Sedki, A., and Ouazar, D. (2012). “Hybrid particle swarm optimization and differential evolution for optimal design of water distribution systems.” J. of Advanced Eng. Inform., 26, 582-591.

18. Kennedy, J., and Eberhart, R. (1995). “Particle swarm optimization.” In Proceedings of IEEE International Conference on Neural Networks, Australia Perth, 1942-1948.

19. Gaing, Z.L. (2004). “A particle swarm optimization approach for optimum design of PID controller in AVR system.” J. of IEEE Transactions on Energy Conversion, 19, 384-391.

20. Hassanzadeh, I., and Mobayen, S. (2011). “Controller design for rotary inverted pendulum system using evolutionary algorithms.” J. of Mathematical Problems in Engineering, doi: 10.1155/2011/572424.

21. Lin, C., and Hung, S. (2013). “Automatic multi-cycle reload design of pressurized water reactor using particle swarm optimization algorithm and local search.” J. of Annals of Nuclear Energy, 59, 255-260.

22. Sedki, A., and Ouazar, D. (2012). “Hybrid particle swarm optimization and differential evolution for optimal design of water distribution systems.” J. of Advanced Engineering Informatics, 26, 582-591.

23. Hassanzadeh, I., and Mobayen, S. (2008). “PSO-Based controller design for rotary inverted pendulum system.” J. of Applied Sciences, 8, 2907-2912.

24. Montalvo, J., Schwarze, S., and Pérez-García, R. (2010). “Multi-objective particle swarm optimization applied to water distribution systems design: An approach with human interaction.” J. of Mathematical and Computer Modelling, 52, 1219-1227.

25. Rossman, L.A. (2000). EPANET 2 user’s manual, Reports EPA/600/R-00/057. US Environ. Prot. Agency, Cincinnati, Ohio.

26. Kennedy, J., and Eberhart, R.A. (1997). “Discrete binary version of the particle swarm algorithm.” Proceedings of the Conference on Systems, Man, and Cybernetics, 4104-4109.

27. Angeline, P. (1998). “Using selection to improve particle swarm optimization.” Optimization Conference on Evolutionary Computation, Piscataway, New Jersey.

28. Bergh, F.V., and Engelbrecht, A.P. (2002). “A new locally convergent particle swarm optimization.” Proceedings of the IEEE Conference on Systems, Man, and Cybernetics, Hammamet, Tunisia.

29. Riget, J., and Vesterstrom J.A. (2002). Diversity-guided particle swarm optimizer- The ARPSO, EVALife Technical Report, no 2002-2, 2002.

30. USEPA. (2014). EPANET programmer's toolkit, water supply and water resources division of the U.S. environmental Protection Agency's National Risk Management Research Laboratory, USA.

31. Fujiwara, O., and Khang, D.B. (1990). “A two phase decomposition method for optimal design of looped water distribution networks.” J. of Water Resour. Res., 26, 539-549.

32. Reca, J., Martinez, J., Gil, C., and Banos, R. (2007). “Application of several meta-heuristic techniques to the optimization of real looped water distribution networks.” J. of Water Resour. Manag., 22, 1367-1379.

33. Zecchin, A.C., Maier, H.R., Simpson, A.R., Leonard, M., Roberts, A.J., and Berrisford, M.J. (2006). Application of two ant colony optimization algorithms to water distribution system optimization.” J. of Math. Comput. Model., 44, 451-468.

34. Dandy, G.C., Simpson, A.R., and Murphy, L.J. (1996). “An improved genetic algorithm for pipe network optimization.” J. of Water Resour. Res., 32, 449-458.

35. Maier, H.R., Simpsom, A.R., Zwcchin, A.C., Foong, W.K., Phang, K.Y., Seah, H.Y., and Tan, C.L. (2003). “Ant colony optimization for the design of water distribution systems.” J. of Water Resour. Plan. Manage, 129, 200-209.

36. Afshar, M.H., Akbari, M., and Mariño, M.A. (2005). “Simultaneous layout and size optimization of water distribution networks: Engineering approach.” J. of Infrastructure Systems, 11, 221-230. (In Persian)