تسریع رنگزدایی فرایند فتوکاتالیستی تثبیت‌شده توسط اسکاونجر حفره EDTA

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد عمران و محیط زیست، دانشگاه تربیت مدرس، تهران

2 دانشیار، دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس، تهران

چکیده

در این پژوهش اثر اسکاونجر حفره EDTA در تسریع رنگبری رنگزای آبی مستقیم 71 به‌عنوان یک آلاینده سخت تجزیه‌پذیر در فرایند فتوکاتالیستی با استفاده از نانو ذرات دی‌اکسید تیتانیوم پوشش داده شده بر بستر سیمانی بررسی شد. با استفاده از 03/0 مولار EDTA، 75 میلی‌گرم در لیتر رنگزا در pH برابر 6 ، تحت تابش لامپ UV-C  60 وات طی مدت زمان 75 دقیقه رنگبری شد. این درحالی است که رنگزا تحت این شرایط و بدون حضور اسکاونجر در مدت زمان 225 دقیقه حذف شد، به ‌این ترتیب اثر تسریع‌کنندگی این اسکاونجر تأیید شد. سینتیک فرایند فتوکاتالیستی در حضور EDTA مرتبه اول با ثابت واکنش 05/0 بر دقیقه به‌دست آمد که 5/2 برابر سرعت واکنش بدون اسکاونجر بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Using the EDTA Hole Scavenger to Accelerate Decolorization in the Immobilized Photocatalytic Process

نویسندگان [English]

  • raziye Asgari 1
  • Bita Ayati 2
1 MSc Student of Civil and Environmental Engineering, Tarbiat Modarres University, Tehran
2 Assoc. Prof. of Civil and Environmental Engineering, Tarbiat Modarres University, Tehran
چکیده [English]

This study investigated the effect of EDTA as a hole scavenger on accelerating the photocatalytic decolorization of direct blue 71 as a non-degradable model pollutant with nano TiO2 powder immobilized on a cementitious bed. For this purpose, 75 mg/L of the dye was decolorized in 75 minutes with 0.03 M of EDTA at a pH level of 6 and under irradiation produced by a 60-W UV-C lamp. This is while decolorization under identical conditions but in the absence of EDTA had been accomplished in 225 minutes. The experiment, therefore, confirmed the accelerating effect of the scavenger on decolorization. The kinetics of the photocatalytic process with EDTA followed a first order reaction with a constant rate of 0.05 min-1, which is 2.5 times faster than the process without EDTA.

کلیدواژه‌ها [English]

  • Kinetics
  • concentration
  • pH
  • Irradiation intensity
  • Direct Blue 71
  1.  

    1. Park, J., and Shore, J. (2004). Practical dyeing, Vo. 1, Society of Dyers and Colourists, UK.
    2. Chakraborty, N.J. (2010). Fundamentals and practices in colouration of textiles, Woodhead Pub., New delhi, India.
    3. Kangwansupamonkon, W., Jitbunpot, W., and Kiatkamjornwong, S. (2010). “Photocatalytic efficiency of TiO2/poly[acrylamide-co-(acrylic acid)] composite for textile dye degradation.” J. of Polymer Degradation and Stability, 95, 1894-1902.
    4. Karaoglu, M.H., and Ugurlu, M. (2010). “Studies on UV/NaOCl/TiO2/Sep photocatalysed degradation of Reactive Red 195.” J. of Hazardous Materials, 174, 864-871.
    5. Chong, N.M., Jin, B., Chow, C.W., and Saint, C. (2010). “Recent developments in photocatalytic water treatment technology: A review.” J. of Water Research, 44, 2997-3027.
    6. Panbehkar, M., and Ayati, B. (2014). “Comparing the capability of NaIO4 and NaBrO3 oxidants on improving UV/TiO2 photocatalytic process in removal of direct blue 71 dye.” Sharif J. of Science and Technology,
      (In press). (In persian)
    7. Cavicchioli, A., and Gutz, I.G.R. (2002). “Effect of Scavengers on the photocatalytic digestion of organic matter in water samples assisted by TiO2 in suspension for the voltammetric determination of heavy metals.” J. of. Braz. Chem. Soc., 13(4), 441-448.
    8. Tan, T., Beydoun, D., and Amal, R. (2003). “Effects of organic hole scavengers on the photocatalytic reduction of selenium anions.” J. of Photochemistry and Photobiology A: Chemistry, 159, 273-280.
    9. Chen, Y., Yang, S., Wang, K., and Lou, L. (2005). “Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of acid orange 7.” J. of Photochemistry and Photobiology A: Chemistry, 172, 47-54.

    10. Ni, M., Leung, H.K., Michael Leung, C.Y., Dennis, and Sumathy, K. (2007). “A review and recent developmen ts in photocatalytic water-splitting using TiO2 for hydrogen production.” J. of Renewable and Sustainable Energy Reviews, 11, 401-425.

    11. Rajeshwar, K., Osugi, E.M., Chanmanee, W., Chenthamarakshan, R.C., Zanoni, B.V.M., Kajitvichyanukul, P., and Krishnan-Ayer, R. (2008). “Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media Review.” J. of Photochemistry and Photobiology C: Photochemistry Reviews, 9, 171-192.

    12. Syoufian, A., and Nakashima, K. (2007). “Degradation of methylene blue in aqueous dispersion of hollow titania photocatalyst: Optimization of reaction by peroxy disulfate electron scavenger.” J. of Colloid and Interface Science, 313, 213-218.

    13. Chong, M.N., Jin, B., Chow, C.K.W., and Saint, C. (2010). “Recent developments in photocatalytic water treatment technology: A review.” J. of Water Research, 44, 2997-3027.

    14. Guo, M.Y., Ng, A.M.C., Liu, F., Djurišić, A.B., and Chan, W.K. (2011). “Photocatalytic activity of metal oxides-The role of holes and OH radicals.” J. of Applied Catalysis B: Environmental, 107, 150-157.

    15. Wang, Y., and Zhang, P. (2011). “Photocatalytic decomposition of perfluorooctanoic acid (PFOA) by TiO2 in the presence of oxalic acid.” J. of Hazardous Materials, 192, 1869-1875.

    16. Mohamed, H., Hanan, B., and Detlef W. (2012) “The role of electron transfer in photocatalysis: Fact and fictions.” J. of Applied Catalysis B: Environmental, 12(103), 1-14.

    17. Licker, D.M. (2003). Dictionary of chemistry, 2nd Ed., McGraw Hill, New York, USA. 

    18. Yuexiang, L., Gongxuan, L., and Shuben L. (2002). “Photocatalytic transformation of rhodamine B and its effect on hydrogen evolution over Pt/TiO2 in the presence of electron donors.” J. of Photochemistry and Photobiology A: Chemistry, 152, 219-228.

    19. Kim, G., and Choi, W. (2010). “Charge-transfer surface complex of EDTA-TiO2 and its effect on photocatalysis under visible light.” J. of Applied Catalysis B: Environmental, 100, 77-83.

    20. Reddy, K., and Chinthamreddy, S. (2003). “Sequentially enhanced electrokinetic remediation of heavy metals in low buffering clayey soils.” J. of Geotechnical and Geoenvironmental Engineering, 129(3),
    263-277.

    21. Gidarakos, E., and Giannis, A. (2006). “Chelate agents enhanced electro kinetic remediation for removal cadmium and zinc by conditioning catholyte pH.” J. of Water, Air, and Soil Pollution, 172, 295-312.

    22. Chen, Y., Yang, S., Wang, K., and Lou, L. (2005). “Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of acid orange 7.” J. of Photochemistry and Photobiology A: Chemistry, 172, 47-54.

    23. Sohrabi, R.M., and Ghavami, M. (2008). “Photocatalytic degradation of direct Red 23 dye using UV/TiO2: Effect of operational parameters.” J. of Hazardous Materials, 153, 1235-1239.

    24. Ghodsian, M., Ayati, B., and Ganjidoust, H. (2013). “Determination of optimum amounts of effective parameters in reactive dyes removal using photocatalytic reactions by immobilized TiO2 nano particles on concrete surface.”  J. of Water and Wastewater, 87, 45-53. (In Persian)

    25. Panbehkar, M., and Ayati, B. (2014). “The effect of Na2S2O8 oxidant on improving the efficiency of photo-catalytic process of nano-TiO2 immobilized on concrete in DB71 removal.” Iran. J. of Health and Environ.,
    (In press). (In Persian)

    26. Damodar, A.R., Sheng-Jie, Y., and Shang-Hsin, O. (2010). “Coupling of membrane separation with photocatalytic slurry reactor for advanced dye wastewater treatment.” J. of Separation and Purification Technology, 76, 64-71.

    27. APHA. (1999). Standard methods for the examination of water and wastewater, 20th Ed., American Pub. Health Association, Washington, D.C.

    28. Bansal, P., and Sud, D. (2013). “Photocatalytic degradation of commercial dye, CI reactive red 35 in aqueous suspension: Degradation pathway and identification of intermediates by LC/MS.” J. of Molecular Catalysis A: Chemical, 374/375, 66-72.

    29. Tang, Z.W., Zhang, Z., An, H., Quintana, O.M., and Torres, F.D. (2010). “TiO2/UV photodegradation of azo dyes in aqueous solutions.” J. of Environmental Technology, 18(1), 1-12.

    30. Konstantinou, K.I., and Albanis, A.T. (2004). “TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations a review.” J. of Applied Catalysis B: Environmental, 49, 1-14.