درونیابی مبتنی بر توابع پایه شعاعی و نگاشت داده‌های ناقص تداوم بارندگی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه عمران، دانشکده مهندسی، دانشگاه زابل

2 استاد دانشکده مهندسی، بخش راه و ساختمان، دانشگاه شیراز

چکیده

یکی از روشهای تکمیل داده‌های ناقص، روش درونیابی مبتنی بر توابع‌ پایه شعاعی است. برای این منظور از پنج روش درونیابی برای تکمیل داده‌های تداوم بارندگی حوزه رودخانه پارامتا در سیدنی استرالیا استفاده گردید و برای یافتن روش مناسب درونیابی، ضریب شکل C طی یک روش اعتبار سنجی جانبی، بهینه‌یابی شد. با این ضریب تأثیر شکل خاص، تفاوت میزان به‌دست آمده برای تداوم بارندگی از رگبار شماره 1 در ایستگاههای مختلف از طریق اعتبارسنجی جانبی و میزان مشاهده شده آن، محاسبه شد. به‌منظور بررسی دقت روش تخمین از روشهای کنترل آماری سه‌گانه خطای متوسط نرمال، درصد متوسط خطای تخمین و مربع ضریب همبستگی بین مقدار محاسبه شده و مقدار مشاهده شده، استفاده گردید. نتایج تحقیق نشان داد که روش درونیابی مالتی کوادریک با کمترین خطا، بهترین روش درونیابی برای تکمیل داده‌های ناقص تداوم بارندگی است.

کلیدواژه‌ها


عنوان مقاله [English]

Radial Basis Function (RBF) Interpolation and Investigating its Impact on Rainfall Duration Mapping

نویسندگان [English]

  • Hassan Derakhshan 1
  • Naser Talebbeydokhti 2
1 Assist. Prof. of Civil Eng., Dept. of Eng., Zabol University, Zabol
2 Prof., Dept. of Civil Eng., Shiraz University, Shiraz
چکیده [English]

The missing data in database must be reproduced primarily by appropriate interpolation techniques. Radial basis function (RBF) interpolators can play a significant role in data completion of precipitation mapping. Five RBF techniques were engaged to be employed in compensating the missing data in event-wised dataset of Upper Paramatta River Catchment in the western suburbs of Sydney, Australia. The related shape parameter, C, of RBFs was optimized for first event of database during a cross-validation process. The Normalized mean square error (NMSE), percent average estimation error (PAEE) and coefficient of determination (R2) were the statistics used as validation tools. Results showed that the multiquadric RBF technique with the least error, best suits compensation of the related database.

کلیدواژه‌ها [English]

  • function
  • Rainfall Duration Mapping
  • Shape Function
  • Cross validation
Todini, E. (2001) A bayesian technique for conditioning radar precipitation estimates to rain-gauge measurements Hydrology and Earth System Sciences 5 (2), 187-199
Mackay, N. G., Chandler, R. E., Onof, C., and Wheater, H. S. (2001) Disaggregation of spatial rainfall fields for hydrological modeling Hydrology and Earth System Sciences 5 (2), 165-173
Rodriguez-Iturbe, I., Cox, D. R., and Isham, V. (1987) Some models for rainfall based on stochastic point processes Mathematical and Physical Sciences 410, 269-288
Glasbey, C. A., Cooper, G., and Mcgechan, M. B. (1995) Disaggregation of daily rainfall by conditional simulation from a point-process model J. of Hydrology 165, 1-9
Bo, Z., Islam, S., and Eltahir, E. A. B. (1994) Aggregation-disaggregation properties of a stochastic rainfall model Water Resources Research 30 (12), 3423-3435
Ormsbee, L. E. (1989) Rainfall disaggregation model for continuous hydrologic modeling J. of Hydraulic Engineering 115 (4), 507-525
Cowpertwait, P. S. P. (2001) A continuous stochastic disaggregation model of rainfall for peak flow simulation in urban hydrologic systems Mathematical Reseaech Letters 2, 81-88
Shams, S., Abedini M. J., and Asghari K. (2003) Rainfall disaggregation via artificial neural networks 4th Iranian Hydraulic Conference, Shiraz University, Shiraz , 1-8
Burian, S. J., Durrans, S. R., Nix, S. J., and Pitt, R. E. (2001) Training artificial neural networks to perform rainfall disaggregation J. of Hydrologic Engineering 6 (3), 43-51
Burian, S. J., Durrans, S. R., Tomic, S., Pimmel, R. L., and Wai, C.N. (2000) Rainfall disaggregation using artificial neural networks J. of Hydrologic Engineering 5 (3), 299-307
Tantanee, S., Patamatumkul, S., Oki, Sriboonlue, V., and Prempre, T. (2005) Downscaled rainfall prediction model (DRPM) using a unit disaggregation curve (UDC) Hydrology and Earth System Sciences Discussions 2, 543-568
Fox, N. I., and Collier, C. G. (2000) Physical disaggregation of numerical model rainfall Hydrology and Earth System Sciences 4 (3), 419-424
Salas, J. D., Delleur, J. W., Yevjevich, V., and Lane, W. (1988) Applied modeling of hydrologic time series Water Resources Pub., USA
Luk, K. C., Ball, J. E., and Sharma, A. (2000) A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting J. of Hydrology 227 (1), 56-66
Heneker, T. M., Lambert, F., and Kuczera, G. (2001) A point rainfall model for risk-based design J. of Hydrology 247 (1), 54-71
Hershenhorn, J., and Woolhiser, D. A. (1987) Disaggregation of daily rainfall J. of Hydrology 95, 299-322
Hoang, T. M. T., Rahman, A., Weinmann, P. E., Laurenson, E. M., and Nathan, R. J. (1999) Joint probability description of design rainfalls Proc. of Water 99 Joint Congress – Brisbane, Australia, Institute of Engineers , 379-384
Magness, A. L. G., and McCuen, R. H. (2004) Accuracy evaluation of rainfall disaggregation methods J. of Hydrologic Engineering 9 (2), 71-77
Rippa, S. (1999) An algorithm for selecting a good value for the parameter C in radial basis function interpolation Advances in Computational Mathematics 11, 193-210