تخریب زیستی پساب کارخانه روغن زیتون با باکتری رالستونیا یوتروفا در بیوراکتور هواراند با لوله مشبک داخلی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد مهندسی شیمی، گروه مهندسی شیمی، دانشگاه صنعتی ارومیه، ارومیه، ایران

2 استادیار، گروه مهندسی شیمی ، دانشگاه صنعتی ارومیه، ارومیه، ایران

3 دانشیار، گروه مهندسی شیمی، دانشگاه صنعتی ارومیه، ارومیه، ایران

چکیده

مواد فنلی (TP)از جمله ترکیبات آروماتیک در پساب صنایع مختلف می‌باشند که به‌عنوان آلاینده‌های سمی محیط زیست و مقاوم در برابر شکست شناخته شده‌اند. پساب کارخانه روغن‌گیری از دانه‌های زیتون حاوی مقدار زیادی مواد فنلی و COD است و تخلیه آن به ابهای سطحی و عدم تیمار مناسب آن صدمات جبران‌ناپذیری در محیط‌زیست ببار می‌اورد. در این پژوهش روش تجزیه زیستی به‌دلیل مزایایی همچون سازگاری با محیط زیست، هزینه اولیه و عملیاتی کم و بازدهی زیاد در تیمار پساب‌های کشاورزی و صنعتی مورد استفاده قرار گرفت. فرایند تجزیه زیستی پساب کارخانه روغن‌گیری از زیتون توسط باکتری رالستونیا یوتروفا در بیوراکتور هواراند با لوله داخلی مشبک (ALR-NDT) بررسی شد و اثر میزان هوادهی و غلظت اولیه پساب بر بازدهی حذف مواد فنلی و COD بررسی شد. ابتدا تأثیر میزان هوادهی در شرایط ناپیوسته در کاهش TP مورد بررسی قرار گرفت و بر اساس نتایج آزمایش، نرخ هوادهی 200 میلی‌لیتر بر دقیقه به‌عنوان نرخ بهینه هوادهی در شرایط محیط هوازی انتخاب شد. سپس تأثیر غلظت اولیه OMW در سه مقدار 660، 1220 و 2620 میلی‌گرم در لیتر بر کاهش مقدار TP و COD بررسی شد و به‌ترتیب میزان 95، 96 و 58 درصد کاهش TP برای سه غلظت بالا مشاهده شد. بیشینه میزان کاهش TP و COD برابر 96 و 45 درصد و مربوط به غلظت اولیه 1220 میلی‌گرم در لیتر بود که این بازدهی نشانگر کارایی مناسب راکتور زیستی و باکتری هوازی سازگار شده در تخریب زیستی این پساب واقعی است. با انجام مطالعات سینتیکی، مدل مونود با ضرایب سینتیکی 22/0 = mmaxوmg.L-1863= Ksبا تطبیق قابل قبول با داده‌های تجربی، به‌عنوان مدل سینتیکی تخریب OMW مورد ارزیابی قرار گرفت. با توجه به نتایج، باکتری رالستونیا یوتروفا کارایی مناسبی در مصرف مواد فنلی در غلظت زیاد دارد و راکتور زیستی هواراند با لوله مشبک داخلی با غلبه بر محدودیت‌های انتقال جرمی نقش اساسی در فرایند ایفا می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Removal of Phenolic Compounds from Olive Oil Mill Wastewater using Ralstonia eutropha in an Airlift Bioreactor with Internal Net Draft Tube

نویسندگان [English]

  • Afshin Amani 1
  • Elham Jalilnejad 2
  • Mohammad Sirousazar 3
1 MSc of Chemical Engineering, Urmia University of Tech., Urmai, Iran
2 Assist. Prof., Department of Chemical Engineering, Urmia University of Tech., Urmia, Iran
3 Assoc. Prof., Department of Chemical Engineering, Urmia University of Tech., Urmia, Iran
چکیده [English]

Aromatic compounds such as total phenolic (TP) compounds commonly present in effluents of food and agricultural industries such as Olive mill wastewater (OMW). The high concentration of TP in OMW is usually associated with high measurement of chemical oxygen demand (COD).  Discharge of these chemicals to water ways can creat hazardous environmental condition and have adverse impact of the living organisms. Biological treatment is the most effective method for removing or partially decreasing these chemicals from wastewater.  In this study, the biodegradation of OMW was investigated by using an airlift bioreactor with Ralstonia eutropha equipped with net draft tube (ALR-NDT). The effect of aeration rate and initial TP concentration on the efficiency of the biodegradation process was studied. Innitially, the effect of three aeration rates (100, 200, and 400 mL/min) on TP reduction was studied. The aeration rate of 200 mL/min was found to be as the optimal aeration rate for the biodegradation process. Following these initial experiments, the effect of the three initial OMW concentrations (660, 1220, and 2620 mg/L) were evaluated on TP reduction in the follow up experiments. Results of our study showed that the TP reduction under the above three initial OMW concentrations were 95%, 96%, and 58%, respectively. The maximum TP reduction (96%) were accomplished when the initial TP concentration was1220 mg/L. For future kinetic modeling investigation, we were able to use the experimental data and confimed the behavior of the process as a Monod kinetic model with kinetic coefficients of µmax= 0.22 1/hr and Ks= 863 mg/L. According to the our preliminary results, Ralstonia eutropha was found to be capable of degrading high concentration of phenolic compounds from industrial wastewater.

کلیدواژه‌ها [English]

  • Olive Mill Wastewater
  • Ralstonia Eutropha
  • Airlift Reactor
  • Net Draft Tube
  • Phenolic Compounds
  • Biodegradation
 Ahmadi, M., Vahabzadeh, F., Bonakdarpour, B., Mehranian, M. & Mofarrah, B., 2006, "Phenolic removal in olive oil mill wastewater using loofah-immobilized Phanerochaete chrysosporium", World Journal of Microbiology & Biotechnology, 22, 119-127.

Amor, C., Lucas, M., Garcia, J., Dominguez, J., Heredia, J. B. D. & Peres, J. A., 2015, “Combined treatment of olive mill wastewater by Fenton’s reagent and anaerobic biological process", Journal of Environmental Science and Health, Part A, 50, 161-168.

Annibale, A. D., Quaratino, D., Federici, F. & Fenice, M., 2006, "Effect of agitation and aeration on the reduction of pollutant load of olive mill wastewater by the white-rot fungus Panus tigrinus", Biochemical Engineering Journal, 29, 243-249.

APHA, 1998, Standard methods for the examination of waterand wastewater, Washington, DC. USA.

Aquilanti, L., Taccari, M., Bruglieri, D., Osimani, A., Clementi, F., Comitini, F., et al., 2014, "Integrated biological approaches for olive mill wastewater treatment and agricultural exploitation", International Biodeterioration & Biodegradation, 88, 162-168.

Borja, R., Alba, J., & Banks, Ch. J., 1997, "Impact of the main phenolic compounds of olive mill wastewater (OMW) on the kinetics of acetoclastic methanogenesis", Process Biochemistry, 32, 121-133.

Bozkoyunlu, G. & Takac, S., 2014, "Parameters and kinetics of olive mill wastewater dephenolization by immobilized Rhodotorula glutinis cells", Environmental Technology, 35, 3074-3081.

Cerrone, F., Barghini, P., Pesciaroli, C. & Fenice, M., 2011, "Efficient removal of pollutants from olive washing wastewater in bubble-column bioreactor by Trametes versicolor", Chemosphere, 84, 254-259.

Chareles, F. B., Sebastian, L. R., Florian, H., Stefan, R., Milan, K. P., Chokyoun, R., et al., 2011, "Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium", Applied Microbiology and Biotechnology, 89,1611-1619.

Chiavola, A., Farabegoli, G. & Antonetti, F., 2014, "Biological treatment of olive mill wastewater in a sequencing batch reactor", Biochemical Engineering Journal, 85, 71-78.

Daassi, D., Sanchez, J. L., Linares, I. B., Belbahri, L., Woodward, S., Mechichi, H. Z., et al., 2014, "Olive oil mill wastewaters: Phenolic content characterization during degradation by Coriolopsis gallica", Chemosphere, 113, 62-70.

Gomez-De Jesus, A., Romano-Baez, F.J., Leyva-Amezcua Ljuarez-Ramirez, C., Ruiz-Ordaz, N. & Galindez-Mayer, J., 2009, "Biodegradation of 2,4,6-trichlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation", Journal of Hazardous Materials, 161,1140-1149

Gunay, A. & Cetin, M., 2013, "Determination of aerobic biodegradation kinetics of olive oil mill wastewater", International Biodeterioration & Biodegradation, 85, 237-242.

Habibi, A. & Vahabzadeh, F., 2013, "Degradation of formaldehyde in packed-bed bioreactor by Kissiris- immobilized Ralstonia uotropha", Biotechnology and Bioprocess Engineering, 18, 455-464.

Jalilnejad, E., Mogharei, A., & Vahabzadeh, F., 2011, "Aerobic pretreatment of olive oil mill wastewater using Ralstonia eutropha",Environmental Technology, 32, 1085-1093.

Jalilnejad, E., & Vahabzadeh, F., 2014, "Use of a packed-bed airlift reactor with net draft tube to study kinetics of naphthalene degradation by Ralstonia eutropha", Environmental Science and Pollution Research, 21, 4592-4604.

Khalid, T. A., & Naas, M. H. E., 2012, "Aerobic biodegradation of phenols: A comprehensive review", Environmental Science and Technology, 42,1631-1690.

Levenspiel, O. & Han, K., 1998, "Extended Monod kinetic for substrate, product, and cell inhibition", Biotechnology and Bioengineering, 32, 430-437.

Marquez, P. M., Toledo, M. V. M., Fenice, M., Andrade, L., Lasserrot, A. & Lopez, J. G., 2014, "Biotreatment of olive washing wastewater by a selected microalgal-bacterial consortium", International Biodeterioration & Biodegradation, 88, 69-76.

Martins, R. C., Ferreira, A. M., Ferreira, L. M. G. & Ferreira, R. M. Q., 2015, "Ozonation and ultrafiltration for the treatment of olive mill wastewaters: Effect of key operating conditions and integration schemes”, Environmental Science and Pollution Research, 22, 15587-15597.

Marvin-Sikkema, F. D. & De Bont, J. A. M., 1994, "Degradation of nitroaromatic compounds by microorganisms", Applied Microbiology and Biotechnology, 42,499-507.

Montazavinos, D. & Psillakis, E., 2004, "Enhancement of biodegradability of industrial wastewater by chemical oxidation pre-treatment", Chemical Technology and Biotechnology, 79, 431-454

Nickzad, A., Mogharei, A., Monazzami, A., Jamshidian, H. & Vahabzadeh, F., 2012, "Biodegradation of phenol by Ralstonia eutropha in a Kissiris- immobilized cell bioreactor", Water Environment Research, 84, 626-634.

Olivieri, G., Russo, M., E., Giardina, P., Marzocchella, A., Sannia, G. & Salatino, P., 2012, "Strategies for dephenolization of raw olive mill wastewater by means of Pleurotus Osteratus", Journal of Industrial Microbiology & Biotechnology,39, 719-729.

Paraskeva, P., & Diamadopoulos, E., 2016, "Technologies for olive mill wastewater (OMW) treatment: A review", Journal of Chemical Technology and Biotechnology, 81, 1475-1485.

Qodah, Z. A., Shannag, M. A., Melhem, Kh. B., Assirey, E., Alananbeh, Kh. & Bouqellah, N., 2015, “Biodegradation of olive mills wastewater using thermophilic bacteria",Desalination and Water Treatment, 56, 1908-1917.

Ranjbar, S., Aghtaei, H. Kh., Jalilnejad, E. & Vahabzadeh, F., 2016, "Application of an airlift reactor with a net draft tube in phenol bio-oxidation using Ralstonia eutropha", Desalination and Water Treatment, 57, 1-13.

Riedel, S. L., Jahns, S., Koenig, S., Bock, M. C. E., Brigham, CH. J., Bader, et al., 2015, "Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats", Journal of Biotechnology, 214, 119-127.

Rivas, F. J., Beltran, F. G., Gemeno, O. & Frades, J., 2001, "Treatment of olive oil mill wastewater by fentons reagent", Journal of Agricultural and Food Chemistry, 49, 1873-1880.

Samanta, S. K., Bhushan, B., Chauchan, A., Chakraborti, A. K. & Gain, R. K., 2000, "Chemotaxis of a Ralstonia eutropha sp. SJ98toward different nitroaromatic compounds and their degradation", Biochemical and Biophysical Research Communication, 269, 117-123.

Simkins, S. & Alexander, M. 1984, “Models for mineralization kinetics with the variables of substrate concentration and population density”, Applied Environmental Microbiology, 47, 1299-1306.

Tay, J., H., Tay, S.T.L., Liu, Y., Show, K.Y. & Ivanov, V., 2006, Biogranulation technologies for wastewater treatment: Microbial Granules, Elsevier, Oxford, UK.

Vlyssides, A. G., Loizidou, M., Karlis, P. K., Zorpas, A. & Papaioannou, D., 1999, "Electrochemical oxidation of a textile dye wastewater using a Pt/Ti electrode", Journal of Hazardous Materials, 70, 41-52.