Studying Photo Catalytic Property of Zeolite and Garnet Minerals in Removal of the Organic Pollutant from Industrial Wastewater

E. Nazari Garavand¹, E. Panahpour², F. Fakheri Raouf³

1. MSc Student of Environmental Pollution, College of Agriculture and Natural Resources, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
2. Assist. Prof., Department of Soil Science, College of Agriculture and Natural Resources, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
3. Assist. Prof., Department of Environmental Pollutions, College of Agriculture and Natural Resources, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran

(Received Aug. 1, 2017 Accepted Dec.23, 2017)

To cite this article:

Abstract
Lack of water along with environmental problems have put focus on wastewater treatment and its potential for reuse. This study aimed to study the photo catalytic impact of using zeolite and garnet in purification of the organic pollutant from industrial wastewater. In summer of 2016 samples were taken from the industrial wastewater of station number 13 in the Khuzestan steel factory. A pilot with the scale of 1:150 (10 × 24 × 100 cm) was built with hydraulic conditions of this station. The pilot was built of fiberglass material and was divided into 5 ponds with the internal dimensions of 10 × 24 × 20 cm, equipped with outlet valve. There was 5 cm of different amounts of zeolite and garnet inside each pond with three replications including: G 100, Z 100, G50Z50, G70Z30 and G30Z70. The aggregation was 0.2 mm and the wastewater was shed to the remaining 5 cm of the height in each pond and was laid in the light of the sun. After 2, 4 and 6 days, the wastewater of each pond was evacuated and sampled through the outlet valve and was replaced with new wastewater. Then, the amounts of BOD, COD, TSS, TDS, EC, SS, turbidity, pH and OIL were measured with the standard methods. The results showed that the applied levels caused reduction of BOD, COD, TSS, OIL, and turbidity in the output wastewater respectively to the amount of 94.1, 94.94, 84, 90.59, 92.84, and 87.26 percent. The amount of TDS and DO were increased by 1.9 and 1.2 times respectively. The results of the tests related to the levels represented the good performance and proper efficiency of this system, particularly in the case of levels containing garnet and they showed the ability of doing photo catalytic process for removal of existent organic pollutants from the industrial wastewater.

Keywords: Wastewater Purification, Steel Making, Photo catalyst, Zeolite, Garnet.
کپی کرده‌ی عکس متن بالا را باز نمایید:

چکیده
کمپ آب و بروز مشکلات محیط‌زیستی باعث شده تا تصفیه‌های فاضلاب و بررسی امکان استفاده مجدد از مورد توجه قرار گیرد. این پژوهش با هدف بررسی اثر فتوکاتالیستی استفاده از زنلیت و گارنت در حذف آلاینده‌های آبی فاضلاب صنعتی انجام شد. برای اجرای پژوهش به این‌طور به سه دسته تقسیم‌بندی شد که شامل تغییر pH، کربناته، و pH و تغییر pH کربناته بوده که در پژوهش مورد بررسی قرار گرفت. نمونه‌برداری از بدنه‌های 3 و 6 روز از طریق شیر خروجی انجام و به‌صورت SS، EC، TDS، TSS، COD، BOD، Oil و pH کپی کرده‌ی عکس متن بالا را باز نمایید:

بررسی خاصیت فتوکاتالیستی کانی‌های زنلیت و گارنت در حذف آلاینده‌های آبی فاضلاب صنعتی

الهام نظری گروان. 1، واریآم پنابور. 2. فرآیند فاکسی رونف 3

1- دانشجوی کارشناسی ارشد رشته آب‌و-زیست محیط‌زیست، واحد آب‌و-زیست دانشگاه آزاد اسلامی، اهواز، ایران
2- استادیار رشته خاک‌شناسی، دانشکده کشاورزی و منابع طبیعی، واحد آب‌و-زیست دانشگاه آزاد اسلامی، اهواز، ایران
3- استادیار رشته آب‌و-زیست دانشکده کشاورزی و منابع طبیعی، واحد آب‌و-زیست دانشگاه آزاد اسلامی، اهواز، ایران

Doi: 10.22093/wwj.2018.94145.2464

100 Z, 70, 30, 50, 100 G

100 Z, 30, 50, 70, 100 G

100 Z, 30, 50, 70, 100 G

BOD, Oil و pH کپی کرده‌ی عکس متن بالا را باز نمایید:

مواد و کاهی‌های:

1- مقدمه

در سیاست‌های آب‌و-زیستی کشور فلسطین، تغییرات هدایت و سطحی که از شهر خارج می‌شود در زمین‌های کشاورزی پایین دست استفاده می‌شود. برای کاهش در زمین‌های به‌مقدار زیست‌داره‌ای استفاده از فلسطین‌های در آب‌های پذیرش، چهارگانی شده و یا قبل از ورود به آن‌ها تصفیه شوند (Kamali et al., 2011).

Journal of Water and Wastewater
Vol. 29, No. 6, 2019

magheh آب و فاضلاب
دوره 29، شماره 6، 1397

57 dx.doi.org/10.22093/wwj.2018.94145.2464
مورد استفاده قرار می‌گیرد. یکی از روش‌های مؤثر به منظور حذف آلودگی آنلاین استفاده از خاصیت فتوکاتالیستی برای تبدیل مولکول‌های آلی به مواد بی‌ضرر بی‌ربط است. از مولکول‌های متغیر فتوکاتالیستی مورد استفاده می‌توان به ذراتی در دیکسید تیتانیم (TiO2) اشاره کرد که توانایی بسیار بالا در تبدیل به نور بی‌ربط (طول موج قریب 380 نانومتر) خاصیت فتوکاتالیستی از خود نشان می‌دهد (Bhadeshia, 1999). دیکسید تیتانیم پودر سفید‌رنگ اسپاندارش در قطعات و ماده‌های آنالوژی بوده و دو فاز TiO2 و TiO2 نیمه پایدار می‌باشد (Augugliaro et al., 2009) این امر می‌تواند در رایان‌آمیزی و حفره‌های کاب نشان‌دهنده از آن ایجاد شود. شیمی اکسید کانسپکتیونی است که در این مقاله در مورد بهره‌برداری از TiO2 و ZnO در استفاده در طراحی‌های فیزیکی و مکانیکی اشاره نموده‌اند که همراه با چهار و جهت دیگر این مدل با یکی یا دو روش مناسب و شرایط استفاده می‌تواند به اثبات رسیده است (Ochiai and Fujishima, 2012).

همچنین پژوهشگران در این زمینه که همراه با ZnO و TiO2 باعث افزایش خاصیت فتوکاتالیستی آن می‌شود (Liu et al., 2012, and Zhang et al., 2010) گازهای غیر Dzi کانسپکتیونی در فرآیندهای خاصیت فتوکاتالیستی نادر، فرمول عمومی آن TiO2 و منفی کاتیون‌های SiO2 و AIO3 می‌باشد. (Augugliaro et al., 2009) به علت وجود خاصیت فتوکاتالیستی دارد، فرمول عمومی آن TiO2 که در این مقاله به عنوان A معرف کاتیون‌های SiO2 و B معرف کاتیون‌های SiO2 و AIO3 معرف می‌شود. (Harris and Megaraj, 2001)

کانسپکتیونی از مواد سنگین، مهم‌بوده و سیلیسیم آزاد است و استفاده‌های لازم برای سلامت انسان و محیط زیست یا راه‌نوردی است. (Tahmasebi, 2013) این کانسپکتیون به عنوان Waterjet و Sandblust استفاده می‌شود. یا راه‌نوردی است. (Masoudi et al., 2005) گروه سنگی بنا بر منطقه کلیه در استان آذربایجان شرقی حاوی مقدار قابل توجهی از ذرات فتوکاتالیستی می‌باشد. (Haj et al., 2008)
فوتونکاتالیستی TiO₂ سورد بررسی قرار گرفت. (Shavisi et al., 2013) هدایت گلخانه آمونیاک در فاضلاب پتروشیمی انتخاب شده معادل ۷۵۰ میلی‌گرم در لیزر بود و بی‌نظیری واکنش فوتونکاتالیستی. اثر pH کالیتریزور در پساب بررسی شد. نتایج تجربی نشان داده که عملکرد دو نوع سیستم راکتور هوا‌دهی قریب‌ا Mandatory به دو کارد. همچنین، راندمان حذف آمونیاک با افزایش مقدار pH تغییر آمونیاک در pH برابر ۱۱ به مقدار است. نتایج نشان داده که تحقیق فوتونکاتالیستی به دنبال تاثیر حذف شد. (Gharibeh and Vafaei, 2011) در سال ۲۰۰۶ در بررسی امکان تجزیه فوتونکاتالیستی تحقیق با استفاده از فرآیندهای UV/TiO₂ شناسان دانه که افزایش pH باعث افزایش حذف قند تیتانیوم به موجب انجام فرآیند TiO₂/SiO₂ در محیط و مایع مایع می‌باشد. از این بررسی روش را می‌توان برای تحقیق پس‌پایه‌های حاوی فنل توصیه نمود. (Rahmani and Movafagh, 2006) در ۲۰۰۶ تحقیق فوتونکاتالیستی نانوذرات TiO₂ به پژوهش دیگر، حداکثر حذف از میزان ۶۸ و مایع pH برابر ۳/۲ در گلخانه ۲۵ میلی‌گرم در لیزر تیتانیوم در ۵۰ میلی‌لیتر pH تیتانیوم ۱۲۳ نام می‌باشد و دمای محیط برابر ۳۰ درجه سلسیوس گزارش شده است (Narendera et al., 2014). در پژوهش در سال ۲۰۱۶ تحقیق فوتونکاتالیستی نانوذرات TiO₂ به پژوهش دیگر، حداکثر حذف از میزان ۶۸ و مایع pH برابر ۳/۲ در گلخانه ۲۵ میلی‌گرم در لیزر تیتانیوم در ۵۰ میلی‌لیتر pH تیتانیوم ۱۲۳ نام می‌باشد و دمای محیط برابر ۳۰ درجه سلسیوس گزارش شده است (Narendera et al., 2014). در پژوهش در سال ۲۰۱۶ تحقیق فوتونکاتالیستی نانوذرات TiO₂ به پژوهش دیگر، حداکثر حذف از میزان ۶۸ و مایع pH برابر ۳/۲ در گلخانه ۲۵ میلی‌گرم در لیزر تیتانیوم در ۵۰ میلی‌لیتر pH تیتانیوم ۱۲۳ نام می‌باشد و دمای محیط برابر ۳۰ درجه سلسیوس گزارش شده است (Narendera et al., 2014). در پژوهش در سال ۲۰۱۶ تحقیق فوتونکاتالیستی نانوذرات TiO₂ به پژوهش دیگر، حداکثر حذف از میزان ۶۸ و مایع pH برابر ۳/۲ در گلخانه ۲۵ میلی‌گرم در لیزر تیتانیوم در ۵۰ میلی‌لیتر pH تیتانیوم ۱۲۳ نام می‌باشد و دمای محیط برابر ۳۰ درجه سلسیوس گزارش شده است (Narendera et al., 2014). در پژوهش در سال ۲۰۱۶ تحقیق فوتونکاتالیستی نانوذرات TiO₂ به پژوهش دیگر، حداکثر حذف از میزان ۶۸ و مایع pH برابر ۳/۲ در گلخانه ۲۵ میلی‌گرم در لیزر تیتانیوم در ۵۰ میلی‌لیتر pH تیتانیوم ۱۲۳ نام می‌باشد و دمای محیط برابر ۳۰ درجه سلسیوس گزارش شده است (Narendera et al., 2014). در پژوهش در سال ۲۰۱۶ تحقیق فوتونکاتالیستی نانوذرات TiO₂ به پژوهش دیگر، حداکثر حذف از میزان ۶۸ و مایع pH برابر ۳/۲ در گلخانه ۲۵ میلی‌گرم در لیزر تیتانیوم در ۵۰ میلی‌لیتر pH تیتانیوم ۱۲۳ نام می‌باشد و دمای محیط برابر ۳۰ درجه سلسیوس گزارش شده است (Narendera et al., 2014). در پژوهش در سال ۲۰۱۶ تحقیق فوتونکاتالیستی Nانوذرات TiO₂ به پژوهش دیگر، حداکثر حذف از میزان ۶۸ و مایع pH برابر ۳/۲ در گلخانه ۲۵ میلی‌گرم در لیزر تیتانیوم در ۵۰ میلی‌لیتر pH تیتانیوم ۱۲۳ نام می‌باشد و دمای محیط برابر ۳۰ درجه سلسیوس گزارش شده است (Narendera et al., 2014). در پژوهش در سال ۲۰۱۶ تحقیق فوتونکاتالیستی Nانوذرات TiO₂ به پژوهش دیگر، حداکثر حذف از میزان ۶۸ و مایع pH برابر ۳/۲ در گلخانه ۲۵ میلی‌گرم در لیزر تیتانیوم در ۵۰ میلی‌لیتر pH تیتانیوم ۱۲۳ نام می‌باشد و دمای محیط برابر ۳۰ درجه سلسیوس گزارش شده است (Narendera et al., 2014). در پژوهش در سال ۲۰۱۶ تحقیق فوتونکاتالیستی Nانوذرات TiO₂ به پژوهش دیگر، حداکثر حذف از میزان ۶۸ و مایع pH برابر ۳/۲ در گلخانه ۲۵ میلی‌گرم در لیزر تیتانیوم در ۵۰ میلی‌لیتر pH تیتانیوم ۱۲۳ نام می‌باشد و دمای محیط برابر ۳۰ درجه سلسیوس گزارش شده است (Narendera et al., 2014). در پژوهش در سال ۲۰۱۶ تحقیق فوتونکاتالیستی Nانوذرات TiO₂ به پژوهش دیگر، حداکثر حذف از میزان ۶۸ و مایع pH برابر ۳/۲ در گلخانه ۲۵ میلی‌گرم در لیزر تیتانیوم در ۵۰ میلی‌لیتر pH تیتانیوم ۱۲۳ نام می‌باشد و دمای محیط برابر ۳۰ درجه سلسیوس گزارش شده است (Narendera et al., 2014). در پژوهش در سال ۲۰۱۶ تحقیق فوتونکاتالیستی Nانوذرات TiO₂ به پژوهش دیگر، حداکثر حذف از میزان ۶۸ و مایع pH برابر ۳/۲ در گلخانه ۲۵ میلی‌گرم در لیزر تیتانیوم در ۵۰ میلی‌لیتر pH تیتانیوم ۱۲۳ نام می‌باشد و دمای محیط برابر ۳۰ درجه سلسیوس گزارش شده است (Narendera et al., 2014). در پژوهش در سال ۲۰۱۶ تحقیق فوتونکاتالیستی Nانوذرات TiO₂ به پژوهش دیگر، حداکثر حذف از میزان ۶۸ و مایع pH B
Fig. 1. A view of the pilot and how to apply the treatment

Table 1. The method of measuring reviewed parameters of this research

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method of measuring</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD</td>
<td>5210B Water and wastewater standard method (APHA)</td>
</tr>
<tr>
<td>COD</td>
<td>5220A Water and wastewater standard method (APHA)</td>
</tr>
<tr>
<td>TSS</td>
<td>2540D Water and wastewater standard method (APHA)</td>
</tr>
<tr>
<td>TDS</td>
<td>2540C Water and wastewater standard method (APHA)</td>
</tr>
<tr>
<td>pH</td>
<td>Device of 40QLD HACH</td>
</tr>
<tr>
<td>EC</td>
<td>Device of 40QLD HACH</td>
</tr>
<tr>
<td>Turbidity</td>
<td>Device of Turbidimeter 2100N HACH</td>
</tr>
</tbody>
</table>

Table 2. The chemical combination of the used garnet in this experiment by XRF method

<table>
<thead>
<tr>
<th>Combination type</th>
<th>Ti</th>
<th>K₂O</th>
<th>Na₂O</th>
<th>CaO</th>
<th>MgO</th>
<th>MnO</th>
<th>FeO</th>
<th>Al₂O₃</th>
<th>TiO₂</th>
<th>SiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight percentage</td>
<td>0.16</td>
<td>0.00</td>
<td>0.05</td>
<td>34.11</td>
<td>0.18</td>
<td>1.21</td>
<td>22.52</td>
<td>5.39</td>
<td>2.65</td>
<td>35.08</td>
</tr>
</tbody>
</table>

Table 3. The chemical combination of used zeolite in this experiment by XRF method (Peyravi et al. 2015)

<table>
<thead>
<tr>
<th>Combination type</th>
<th>CaO</th>
<th>K₂O</th>
<th>Na₂O</th>
<th>BaO</th>
<th>MgO</th>
<th>ZnO</th>
<th>Fe₂O₃</th>
<th>Al₂O₃</th>
<th>TiO₂</th>
<th>SiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight percentage</td>
<td>2.29</td>
<td>2.11</td>
<td>1.94</td>
<td>0.086</td>
<td>1.21</td>
<td>0.01</td>
<td>1.17</td>
<td>11.52</td>
<td>0.22</td>
<td>70.03</td>
</tr>
</tbody>
</table>

Table 3. The chemical combination of used zeolite in this experiment by XRF method (Peyravi et al. 2015)

<table>
<thead>
<tr>
<th>Combination type</th>
<th>ZrO₂</th>
<th>SrO</th>
<th>Y₂O₃</th>
<th>Rb₂O</th>
<th>SO₃</th>
<th>Cl</th>
<th>L.O.I (1050°C 1 hrs)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight percentage</td>
<td>2.29</td>
<td>2.11</td>
<td>1.94</td>
<td>0.086</td>
<td>1.21</td>
<td>0.01</td>
<td>1.17</td>
<td>99.99</td>
</tr>
</tbody>
</table>
جدول 4 - خصوصیات کیفی فاضلاب مورد استفاده در این تحقیق

<table>
<thead>
<tr>
<th>ترازایر (NTU)</th>
<th>EC</th>
<th>pH</th>
<th>SS (mg/L)</th>
<th>DO (mg/L)</th>
<th>TSS (mg/L)</th>
<th>TDS (mg/L)</th>
<th>COD (mg/L)</th>
<th>BOD₅ (mg/L)</th>
<th>BOD₃ (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>4180</td>
<td>8.1</td>
<td>816</td>
<td>1.7</td>
<td>3.6</td>
<td>535</td>
<td>2110</td>
<td>2976</td>
<td>892</td>
</tr>
</tbody>
</table>

جدول 5 - تغییر خصوصیات کیفی فاضلاب در زمان و تیمارهای مختلف در برابر نور خورشید

<table>
<thead>
<tr>
<th>تغییر (رو)</th>
<th>ترازایر (NTU)</th>
<th>BOD₅ (mg/L)</th>
<th>COD (mg/L)</th>
<th>TDS (mg/L)</th>
<th>TSS (mg/L)</th>
<th>DO (mg/L)</th>
<th>SS (mg/L)</th>
<th>pH</th>
<th>EC (μS/cm)</th>
<th>Turbidity (NTU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>G₁₀₀</td>
<td>53</td>
<td>160</td>
<td>3500</td>
<td>89</td>
<td>7.82</td>
<td>0.2</td>
<td>10.3</td>
<td>8.12</td>
<td>9101</td>
</tr>
<tr>
<td></td>
<td>Z₁₀₀</td>
<td>69</td>
<td>203</td>
<td>10440</td>
<td>131</td>
<td>7.7</td>
<td>0.3</td>
<td>12.1</td>
<td>8.24</td>
<td>16540</td>
</tr>
<tr>
<td></td>
<td>G₅₀₋Z₃₀₀</td>
<td>74</td>
<td>214</td>
<td>8320</td>
<td>141</td>
<td>7.5</td>
<td>0.3</td>
<td>12.4</td>
<td>8.31</td>
<td>13810</td>
</tr>
<tr>
<td></td>
<td>G₇₀₋Z₃₀₀</td>
<td>76</td>
<td>225</td>
<td>8790</td>
<td>150</td>
<td>7.41</td>
<td>0.4</td>
<td>12.6</td>
<td>8.32</td>
<td>14113</td>
</tr>
<tr>
<td></td>
<td>G₃₀₋Z₇₀₀</td>
<td>79</td>
<td>234</td>
<td>10026</td>
<td>149</td>
<td>7.32</td>
<td>0.4</td>
<td>13.1</td>
<td>8.38</td>
<td>16170</td>
</tr>
</tbody>
</table>

بيولوژیکی است (نسبت Kمتراز 5/3). بهترین تیمارهای مختلف گارت و ترازایر، تیمارهای حاوی مقادیر بیشتر گارت، کارایی بیشتری در کاهش مقدار BOD و pH را داشته. همچنین با قرار گرفتن در برابر نور خورشید به مدت طولانی تر، ترازایر بیشتری همکاره در کاهش BOD و pH فعالیت داشته و به تنهایی و با تریب 0.02 و 0.01 اکثربه در تغییرات ترازایر در این میزان در برابر نور خورشید و ترازایر مورد استفاده در این تحقیق کاهش داشتند.

* Journal of Water and Wastewater
Vol. 29, No. 6, 2019
دوره 29، شماره 6، سال 1397
در فاضلابات مورد بررسی 535 میلی‌گرم در نیتر استاندارد TSS مقدار
بود که در تیمارهای مختلف مورد بررسی کاهش یافت؛ بنابراین در نهایت نتایج، تیمارهای تاسیس‌آموزشی کاهش یافتند. میزان زمان نسبت به ترتیب نشان داده شد که این کاهش در زمان‌های ۶، ۴ و ۳ روز از اعمال تیمار‌های تعضیفی تقریباً مشابه تاریکی است. در نتیجه، نتایج نشان دادند که میزان نسبت به میزان مورد حفظ در حداکثری میانگین را کاهش می‌دهد.

در پژوهشی که بر روی این ماده تحقیق نشده بود، این نتایج نشان داد که این تیمارهای مختلف مورد بررسی کاهش یافتند. در نتیجه، نتایج نشان دادند که میزان نسبت به میزان مورد حفظ در حداکثری میانگین را کاهش می‌دهد.
Table 6. The descriptive statistics of the reviewed parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Average</th>
<th>Standard error</th>
<th>The standard deviation</th>
<th>Variance</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD (mg/L)</td>
<td>182.00</td>
<td>95.1944</td>
<td>8.27483</td>
<td>49.64895</td>
<td>2465.018</td>
<td>0.540</td>
<td>-0.621</td>
</tr>
<tr>
<td>COD (mg/L)</td>
<td>525.00</td>
<td>260.8333</td>
<td>22.97405</td>
<td>137.84432</td>
<td>19001.057</td>
<td>0.812</td>
<td>0.088</td>
</tr>
<tr>
<td>pH</td>
<td>2.91</td>
<td>7.7381</td>
<td>0.10263</td>
<td>0.61579</td>
<td>0.379</td>
<td>-1.180</td>
<td>1.859</td>
</tr>
<tr>
<td>TSS (mg/L)</td>
<td>225.00</td>
<td>139.8611</td>
<td>10.30258</td>
<td>61.81546</td>
<td>3821.152</td>
<td>-0.460</td>
<td>-0.452</td>
</tr>
<tr>
<td>DO (mg/L)</td>
<td>1.80</td>
<td>7.1128</td>
<td>0.09305</td>
<td>0.55830</td>
<td>0.312</td>
<td>0.001</td>
<td>-1.366</td>
</tr>
<tr>
<td>Oil (mg/L)</td>
<td>31.20</td>
<td>15.1583</td>
<td>1.33123</td>
<td>7.98736</td>
<td>63.798</td>
<td>1.325</td>
<td>1.209</td>
</tr>
<tr>
<td>EC (µs/cm)</td>
<td>16930.00</td>
<td>14645.3611</td>
<td>711.08464</td>
<td>4266.50785</td>
<td>1.8207</td>
<td>0.738</td>
<td>0.949</td>
</tr>
<tr>
<td>TDS (mg/L)</td>
<td>12997.00</td>
<td>8900.500</td>
<td>509.56956</td>
<td>3057.41735</td>
<td>9347800.83</td>
<td>0.561</td>
<td>0.639</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>12.68</td>
<td>106769</td>
<td>0.54408</td>
<td>3.26449</td>
<td>10.657</td>
<td>0.284</td>
<td>-0.534</td>
</tr>
</tbody>
</table>

References

