مدیریت و تحلیل غیرخطی سیستم گندزدایی شبکه‌های توزیع آب با استفاده از روش‌های داده‌محور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، بخش مهندسی آب، دانشگاه شهید باهنر کرمان، کرمان، ایران

2 دانش‌آموخته کارشناسی ارشد مهندسی و مدیریت ساخت، گروه عمران، دانشگاه آزاد اسلامی واحد سیرجان، سیرجان، ایران

3 دانش‌آموخته کارشناسی ارشد مهندسی منابع آب، بخش مهندسی آب، دانشگاه شهید باهنر کرمان، کرمان، ایران

چکیده

به‌منظور تأمین آب آشامیدنی سالم و حذف عوامل بیماری‌زا در شبکه‌های توزیع آب، از واحد کلرزنی استفاده می‌شود. یکی از شیوه‌های مناسب برای تحلیل عملکرد کلر درون شبکه آبرسانی، استفاده از روش‌های داده‌محور است. در پژوهش حاضر شبکه عصبی پرسپترون چندلایه (MLP) با سه الگوریتم آموزش کاهش شیب، شیب مزدوج و BFGS به همراه ماشین‌بردار پشتیبان (SVM) با تابع کرنل RBF در برآورد غلظت کلر باقیمانده در شبکه‌های آبرسانی احمدآباد دئفه و اهروییه واقع در استان کرمان مورد استفاده قرار گرفت. در این پژوهش داده‌های روزانه شامل دبی آب تولیدی، مصرف کلر و کلر باقیمانده از ابتدای سال 1391 تا پایان 1393 به‌مدت 3 سال به‌کار گرفته شد. به‌منظور ارزیابی عملکرد مدل‌های مورد بررسی از معیارهای راندمان نش‌ساکلیف(NS)، ریشه میانگین مربعات خطا (RMSE)، میانگین درصد خطای مطلق (MAPE) و ضریب همبستگی (CORR) استفاده شد. این مقادیر در بهترین حالت مدل‌سازی به‌ترتیب برابر با 9484/0، 0255/0، 081/1 و 974/0 بودند. با توجه به معیارهای ارزیابی، مدل MLP با الگوریتم BFGS در 90 درصد و با الگوریتم شیب مزدوج در 10 درصد موارد نسبت به نتایج کل مدل‌ها برتری داشتند، در حالی که مدل MLP بر پایه الگوریتم کاهش شیب و مدل SVM در هیچ یک از موارد برتر نبوده‌اند. با توجه به نتایج حاصل از پژوهش حاضر، مدیریت مناسب غلظت کلر را می‌توان با توجه به مقادیر پیش‌بینی شده میزان کلر باقیمانده، در شبکه آبرسانی اعمال نمود به‌طوری که کاهش عملکرد شبکه پرسپترون و ماشین‌بردار پشتیبان در شبکه آبرسانی اهروییه نسبت به شبکه احمدآباد دئفه را می‌توان ناشی از مدیریت ناصحیح کلرزنی دانست.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Management and Nonlinear Analysis of Disinfection System of Water Distribution Networks Using Data Driven Methods

نویسندگان [English]

  • Mohammad Zounemat-Kermani 1
  • Mohammad Jamalizadeh 2
  • Abdollah Ramezani 3
1 Assoc. Prof., Department of Water Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
2 MSc Graduated, Department of Civil Engineering, Islamic Azad University Sirjan Branch, Sirjan, Iran
3 MSc Graduated, Department of Water Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
چکیده [English]

Chlorination unit is widely used to supply safe drinking water and removal of pathogens from water distribution networks. Data-driven approach is one appropriate method for analyzing performance of chlorine in water supply network. In this study, multi-layer perceptron neural network (MLP) with three training algorithms (gradient descent, conjugate gradient and BFGS) and support vector machine (SVM) with RBF kernel function were used to predict the concentration of residual chlorine in water supply networks of Ahmadabad Dafeh and Ahruiyeh villages in Kerman Province. Daily data including discharge (flow), chlorine consumption and residual chlorine were employed from the beginning of 1391 Hijri until the end of 1393 Hijri (for 3 years). To assess the performance of studied models, the criteria such as Nash-Sutcliffe efficiency (NS), root mean square error (RMSE), mean absolute percentage error (MAPE) and correlation coefficient (CORR) were used that in best modeling situation were 0.9484, 0.0255, 1.081, and 0.974 respectively which resulted from BFGS algorithm. The criteria indicated that MLP model with BFGS and conjugate gradient algorithms were better than all other models in 90 and 10 percent of cases respectively; while the MLP model based on gradient descent algorithm and the SVM model were better in none of the cases. According to the results of this study, proper management of chlorine concentration can be implemented by predicted values of residual chlorine in water supply network. Thus, decreased performance of perceptron network and support vector machine in water supply network of Ahruiyeh in comparison to Ahmadabad Dafeh can be inferred from improper management of chlorination.

کلیدواژه‌ها [English]

  • Disinfection
  • Data-driven Methods
  • Chlorine Residual
  • Perceptron Network
  • Support
  • Vector Machine
Adl, J., Mohammadfam, I. & Nezamoddini, Z., 2008, "Evaluation of the chlorine gas leakage risk of drinking water chlorination stations in Tehran using FTA method", Journal of Jundishapur Scientific Medical, 6(4), 461-468. (In Persian)
Abraham, A., 2005, "Artificial neural networks", Sydenham, P.H. & Thorn, R. (Eds.) Handbook of measuring system design, John Wiley & Sons, Stillwater, OK, USA.
Ammar, T.A., Abid, K.Y., El-Bindary, A.A. & El-Sonbati, A.Z., 2014, "Chlorine dioxide bulk decay prediction in desalinated drinking water", Journal of Desalination, 352, 45-51.
Aslhashemi, A., 2012, "Comparison of residual chlorine in drinking water resources in urban and rural areas of Ilam Province", Journal of Application of Chemistry in the Environment, 3(12), 17-22. (In Persian)
Bowden, G.J., Nixon, J.B., Dandy, G.C., Maier, H.R. & Holmes, M., 2006, "Forecasting chlorine residuals in a water distribution system using a general regression neural network", Journal of Mathematical and Computer Modelling, 44(5-6), 469-484.
Dibike, Y.B., Velickov, S., Solomatine, D. & Abbott, M.B., 2001, "Model induction with support vector machines: introduction and applications", Journal of Computing in Civil Engineering, 15(3), 208-216.
Gibbs, M.S., Morgan, N., Maier, H.R., Dandy, G.C., Nixon, J.B. & Holmes, M., 2006, "Investigation into the relationship between chlorine decay and water distribution parameters using data driven methods", Journal of Mathematical and Computer Modelling, 44(5-6), 485-498.
Karadirek, I.E., Kara, S., Muhammetoglu, A., Muhammetoglu, H. & Soyupak, S., 2016, "Management of chlorine dosing rates in urban water distribution networks using online continuous monitoring and modeling", Urban Water Journal, 13(4), 345-359.
Karadirek, I.E., Soyupak, S. & Muhammetoglu, H., 2016, "Chlorine modeling in water distribution networks using ARX and ARMAX model structures", Desalination and Water Treatment, 57(25), 11592-11598.
Miranzadeh, M.B., Hasanzadeh, M., Dehqan, S. & Sabahi-Bidgoli, M., 2011, "The relationship between turbidity, residual chlorine concentration and microbial quality of drinking water in rural areas of Kashan during 2008-9", Journal of Kashan University of Medical Sciences (Feyz), 15(2), 126-131. (In Persian)
Nejjari, F., Puig, V., Perez, R., Quevedo, M.A, Cuguero, M.A., Sanz, G. & Mirats, J.M., 2014, "Chlorine decay model calibration and comparison: Application to a real water network", Journal of Procedia Engineering, 70, 1221-1230.
Perju, S. & Stanescu, I., 2015, "Numeric modelling of the residual chlorine concentration evolution in a water distribution network", Revista de Chimie, 66(6), 886-890.
Rodriguez, M.J. & Serodes, J.B., 1999, "Assessing empirical linear and non-linear modelling of residual chlorine in urban drinking water systems", Journal of Environmental Modelling & Software, 14, 93-102.
Salehi-Artimani, J., Shamizadeh, H., Alinejad-Shahabi, R. & Arjmand, M., 2012, "Modeling and evaluation of risk of chlorine gas emission in water treatment plants", Journal of Application of Chemistry in the Environment, 3(9), 39-50. (In Persian)
Smola, A.J. & Scholkopf, B., 2004, "A tutorial on support vector regression", Journal of Statistics and Computing, 14(3), 199-222.
Tabesh, M., Azadi, B. & Rouzbahani, A., 2011, "Optimization of chlorine injection dosage in water distribution networks using a genetic algorithm", Journal of Water & Wastewater, 22 (1), 2-11. (In Persian)
The Standard and Industrial Research Organization, 1997, Physical and chemical characteristics of potable water, Standard No. 1053, Tehran, Iran. (In Persian)
Wu, W., Dandy, G.C. & Maier, H.R., 2015, "Optimal control of total chlorine and free ammonia levels in a water transmission pipeline using artificial neural networks and genetic algorithms", Journal of Water Resources Planning and Management, 141(7), 123-135.
Yu, P.S., Chen, S.T. & Chang, I.F., 2006, "Support vector regression for real-time flood stage forecasting.” Journal of Hydrology, 328, 704-716.