علی جمالی, حمزه, دیندارلو, کاووس, پناهی فرد, مسعود, مرادنیا, مریم. (1397). روش سطح پاسخ در بهینهسازی تصفیه فاضلاب صنایع فرش با استفاده از فرات پتاسیم. مجله آب و فاضلاب, 29(2), 38-47. doi: 10.22093/wwj.2017.44343.2078
حمزه علی جمالی; کاووس دیندارلو; مسعود پناهی فرد; مریم مرادنیا. "روش سطح پاسخ در بهینهسازی تصفیه فاضلاب صنایع فرش با استفاده از فرات پتاسیم". مجله آب و فاضلاب, 29, 2, 1397, 38-47. doi: 10.22093/wwj.2017.44343.2078
علی جمالی, حمزه, دیندارلو, کاووس, پناهی فرد, مسعود, مرادنیا, مریم. (1397). 'روش سطح پاسخ در بهینهسازی تصفیه فاضلاب صنایع فرش با استفاده از فرات پتاسیم', مجله آب و فاضلاب, 29(2), pp. 38-47. doi: 10.22093/wwj.2017.44343.2078
علی جمالی, حمزه, دیندارلو, کاووس, پناهی فرد, مسعود, مرادنیا, مریم. روش سطح پاسخ در بهینهسازی تصفیه فاضلاب صنایع فرش با استفاده از فرات پتاسیم. مجله آب و فاضلاب, 1397; 29(2): 38-47. doi: 10.22093/wwj.2017.44343.2078
روش سطح پاسخ در بهینهسازی تصفیه فاضلاب صنایع فرش با استفاده از فرات پتاسیم
1استادیار گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی قزوین، قزوین، ایران
2استادیار گروه مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی هرمزگان، هرمزگان، ایران
3دانشجوی کارشناس ارشد مهندسی بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی قزوین، قزوین، ایران
چکیده
یکی از روشهای اکسیداسیون شیمیایی در تصفیه آب و فاضلاب استفاده از فرات پتاسیم است. هدف از این پژوهش بهینهسازی مصرف فرات پتاسیم در تصفیه فاضلاب صنایع فرش با بهکارگیری طرح مرکب مرکزی و روش سطح پاسخ بود. نمونههای این مطالعه تجربی از فاضلاب یک کارخانه تولید فرش جمعآوری شد. نمونهگیری بهصورت ماهانه و در دو فصل انجام شد. اندازهگیری پارامترهای پژوهش بر اساس روشهای ذکر شده در کتاب استاندارد متد انجام شد. برای تعیین شرایط بهینه حذف COD، رنگ، کدورت و TSS توسط فرات پتاسیم از روش پاسخ سطح و طرح مرکب مرکزی استفاده شد. نتایج نشان داد که دو متغیر مستقل pH و غلظت فرات پتاسیم و اثرات متقابل آنها اثرات معنیداری در حذف متغیرهای پاسخ COD، کدورت، رنگ و TSS داشتند. شرایط بهینه برای حذف این چهار آلاینده برای مقدار فرات پتاسیم برابر با160 میلیگرم در لیتر و برای pH برابر 5/4 بود. در این شرایط میزان حذف COD، کدورت، رنگ و TSS به ترتیب 86، 84،85 و 83 درصد بود. نتایج نشان داد که مدل درجه دوم آماری، برازش خوبی بر دادههای آزمایشگاهی دارد. فرات پتاسیم بهعنوان یک ترکیب مؤثر برای کاهش آلایندههای COD، کدورت، رنگ و TSS از فاضلاب تولیدی صنایع نساجی، بهویژه فرش پیشنهاد میشود. این فرایند میتواند بهعنوان تصفیه مقدماتی و در مواردی که تصفیه زیستی بهعنوان تصفیه اصلی بهکار میرود، بهعنوان تصفیه تکمیلی بهکار رود.
1Assist. Prof. of Environemtnal Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
2Assist. Prof. of Environemtnal Health Engineering, School of Health, Hormozgan University of Medical Sciences, Hormozgan, Iran
3MSc Student of Environemtnal Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
چکیده [English]
One of the chemical oxidation method for water and wastewater treatment is to use potassium ferrate. The aim of this study was to optimize the potassium ferrate consumption for wastewater treatment in carpet industries using central composite design and response surface methodology. The samples of this experimental study were collected from a carpet factory monthly and during two seasons. Measuring of the studied parameters were carried out based on the standard reference method for experiments in water and wastewater. To determine the optimized conditions for removing COD, color, turbidity and TSS by potassium ferrate, the central composite design and response surface methodology were used. The results showed that two independent variables of pH and potassium ferrate concentration and their interaction had a significant effect on removing COD, turbidity, color and TSS variables. The optimum condition for removal of these four pollutants were 160mg/l for consumption dosage of potassium ferrate and 4.5 for pH. In such condition the removal percentage of COD, turbidity, color and TSS were 86%, 85%, 84% and 83% respectively. In addition, the results indicated that the quadratic model has a good fitting to the experimental data. Potassium ferrate is recommended as an effective compound for reducing COD, color, turbidity and TSS from wastewater produced in textile industries especially in carpet industries. This process can be applied as a preliminary treatment and in cases where biological treatment is the main treatment, it could be used as a supplementary treatment.
Ahn, D. H., Chang, W.-S. & Yoon, T. I., 1999, "Dyestuff wastewater treatment using chemical oxidation, physical adsorption and fixed bed biofilm process", Process Biochemistry, 34(5), 429-439.
Arslan, I., Balcioǧlu, I. A. & Tuhkanen, T., 1999, "Oxidative treatment of simulated dyehouse effluent by UV and near-UV light assisted Fenton's reagent", Chemosphere, 39(15), 2767-2783.
Anquandah, G. A., Sharma, V. K., Knight, D. A., Batchu, S. R. & Gardinali, P. R., 2011, "Oxidation of trimethoprim by ferrate (VI): Kinetics, products, and antibacterial activity", Environmental Science & Technology, 45(24), 10575-10581.
Ahmad, A., Ismail, S. & Bhatia, S., 2005, "Optimization of coagulation-flocculation process for palm oil mill effluent using response surface methodology", Environmental Science & Technology, 39(8), 2828-2834.
APHA, A., WEF., 2005, Standard methods for the examination of water and wastewater, American Public Health Association, American Water Works Association, and Water Environment Federation.
Arslan-Alaton, I., Akin, A. & Olmez-Hanci, T., 2010, "An optimization and modeling approach for H2O2/UV‐C oxidation of a commercial non‐ionic textile surfactant using central composite design", Journal of Chemical Technology and Biotechnology, 85(4), 493-450.
Barışçı, S., Ulu, F., Sillanpää, M. & Dimoglo, A., 2015, "Evaluation of flurbiprofen removal from aqueous solution by electrosynthesized ferrate (VI) ion and electrocoagulation process", Chemical Engineering Journal, 262, 1218-1225.
Bartzatt, R., Cano, M., L, Johnson. & Nage., D., 1992, "Removal of toxic metals and nonmetals from contaminated water", Journal of Toxicology and Environmental Health, Part A Current Issues, 35(4), 205-210.
Ciabatti, I., Tognotti, F. & Lombardi, L., 2010, "Treatment and reuse of dyeing effluents by potassium ferrate", Desalination, 250(1), 222-228.
Farooq, S. & Bari, A., 1986, "Tertiary treatment with ferrate and ozone", Journal of Environmental Engineering, 112(2), 301-310.
Han, Q., Wang, H., Dong, W., Liu, T., Yin, Y. & Fanet, H., 2015, "Degradation of bisphenol A by ferrate (VI) oxidation: Kinetics, products and toxicity assessment", Journal ofChemical Engineering, 262, 34-40.
Jiang, J., Stanford, C. & Mollazeinal, A., 2012, "The application of ferrate for sewage treatment: Pilot-to full-scale trials", Global NEST Journal, 14(1), 93-99.
Jiang, J., 2007, "Research progress in the use of ferrate (VI) for the environmental remediation", Journal of Hazardous Materials, 146(3), 617-623.
Jiang, J.-Q., Stanford, C. & Alsheyab, M., 2009, "The online generation and application of ferrate (VI) for sewage treatment A pilot scale trial", Separation and Purification Technology, 68(2), 227-231.
Jiang, J.-Q., Panagoulopoulos, A. & Bauer, M., 2006, "The application of potassium ferrate for sewage treatment", Journal of Environmental Management, 79(2), 215-220.
Jiang, J.-Q., Zhou, Z., Patibandla, S. & Shu, X., 2013, "Pharmaceutical removal from wastewater by ferrate (VI) and preliminary effluent toxicity assessments by the zebrafish embryo model", Microchemical Journal, 110, 239-245.
Jiang, J.-Q., Zhou, Z., Patibandla, S. & Shu, X., 2013, "Pharmaceutical removal from wastewater by ferrate (VI) and preliminary effluent toxicity assessments by the zebrafish embryo model", Microchemical Journal, 110. 239-245.
Jiang, J.-Q., Panagoulopoulos, A., Bauer, M. & Pearce, P., 2006, "The application of potassium ferrate for sewage treatment", Journal of Environmental Management, 79(2), 215-220.
Kuo, W., 1992, "Decolorizing dye wastewater with Fenton's reagent." Water Research, 26(7), 881-886.
Kang, S.-F. & Chang, H.-M., 1997, "Coagulation of textile secondary effluents with Fenton's reagent", Water Science and Technology, 63(2), 215-222.
Mohajeri, S., Aziz, H. A., Isa, M. H., Zahed, M. A. & Adlan, M. N., 2010, "Statistical optimization of process parameters for landfillleachate treatment using electro-Fenton technique", Journal of Hazardous Materials, 176(1), 749-758.
Montgomery, D. C., 2008, Design and analysis of experiments, John Wiley & Sons, N. Y.
Murmann, R.K., & Robinson, P.R., 1974, "Experiments utilizing Fe3O4 for purifying water", Water Research, 8(8), 543-547.
Noordin, M. Y., Venkatesh, V. C., Sharif, S., Elting, S. & Abdullah, A., 2004, "Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel", Journal of Materials Processing Technology, 145(1), 46-58.
Perez, M., Torrades, F., Domenech, X. & Peral, J., 2002, "Fenton and photo-fenton oxidation of textile effluents", Water Research, 36(11), 2703-2710.
Szpyrkowicz, L., Juzzolino, C. & Kaul, S. N., 2001, "A comparative study on oxidation of disperse dyes by electrochemical process, ozone, and hypochlorite and Fenton reagent", Water Research, 35(9), 2129-2136.
Solozhenko, E., Soboleva, N. & Goncharuk, V., 1995, "Decolourization of azodye solutions by Fenton's oxidation", Water Research, 29(9), 2206-2210.
Stanford, C., Jiang, J.-Q. & Alsheyab, M., 2010, "Electrochemical production of ferrate (iron VI): Application to the wastewater treatment on a laboratory scale and comparison with iron (III) coagulant", Water, Air, & Soil Pollution, 209(1-4), 483-488.
Seitz, W., Jiang, J.-Q., Schulz, W., Weber, W. H., Maier, D. & Maier, M., 2008, "Formation of oxidation by-products of the iodinated X-ray contrast medium iomeprol during ozonation", Chemosphere, 70(7), 1238-1246.
Sharma, V. K., Li, X.-Z., Graham, N. & Doong, R.-A., 2008, "Ferrate (VI) oxidation of endocrine disruptors and antimicrobials in water", Journal of Water Supply: Research and Technology-AQUA, 57(6), 419-426.
Yang, B., Ying, G.-G., Zhao, J.-L., Liu, S., Zhou, L.-J. & Chen, F., 2012, "Removal of selected endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) during ferrate (VI) treatment of secondary wastewater effluents", Water Research, 46(7), 2194-2204.
Wang, H.-L., Liu, S.-Q. & Zhang, X.-Y., 2009, "Preparation and application of sustained release microcapsules of potassium ferrate (VI) for dinitro butyl phenol (DNBP) wastewater treatment", Journal of Hazardous Materials, 169(1), 448-453.
Wu, Y., Zhou, S., Qin, F., Ye, X. & Zheng, K., 2010, "Modeling physical and oxidative removal properties of Fenton process for treatment of landfill leachate using response surface methodology (RSM)", Journal of Hazardous Materials, 180(1), 456-465.