ارزیابی پارامترهای موثر بر مصرف آب شرب شهری با استفاده از تکنیک تست گاما

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 دانشجوی دکترای اقتصاد، دانشکده علوم اداری و اقتصادی، دانشگاه فردوسی مشهد

چکیده

افزایش جمعیت و تغییر ساختار جمعیتی طی دهه‌های اخیر در کشور، اهمیت نیاز به تغییر در شیوه‌های مدیریت تقاضای آب شرب شهری و پیش‌بینی تقاضاهای جدید از طریق تحلیل عوامل موثر بر مصرف آب را بیشتر کرده است. لذا ارزیابی خصوصیات فیزیکی و رفتاری مشترکان آب شرب شهری تحت شرایط مختلف مصرف از اهمیت بالایی برخوردار است. در همین راستا، تحقیق حاضر با هدف بررسی اثر خصوصیات فیزیکی و رفتاری مشترکان شهری و با مدنظر قرار دادن تأثیر شرایط اقلیمی در دوره‌های زمانی مختلف برای شهر نیشابور در خراسان رضوی انجام شد. از آنجا که پارامترهای تاثیر گذار بر مصارف آب شهری معرفی شده در تحقیقات مختلف قبلی بسیار متفاوت بود، لذا در این تحقیق سعی شده تا با مدنظر قرار دادن تقریباً تمام عوامل موثر با هم (27 متغیر ورودی)، از توانمندی‌های تست گاما برای ارزیابی اثرات مذکور در یک فضای ناپارامتریک استفاده شود. در ابتدا به‌کمک تست گاما مقدار نزدیک‌ترین همسایگی و تعداد داده‌های مورد نیاز برای مدل‌سازی تعیین شد. سپس با استفاده از روشهای مختلف تعبیه‌سازی، متغیرهای تاثیرگذار و ترکیبات مختلف این متغیرها که بر میزان مصرف آب شرب موثر بودند، انتخاب شدند. نتایج بررسی‌ها نشان می‌دهد که متغیرهای زیادی از جمله متغیرهای مرتبط با عرصه و اعیان، وسایل و تجهیزات کم و پرمصرف، پارامترهای اقلیمی، خصوصیات سیستم توزیع و مشخصات مشترکان، پارامترهای اقتصادی و شرایط مصرف در دوره‌های قبل بر مصرف دو ماهه، سالانه و مصرف بلند مدت مشترکان آب شرب موثر است. همچنین مصرف متوسط بلند مدت مشترکان شهر نیشابور تقریباً برخلاف نتایج دیگر مطالعات ارائه شده به وضعیت فشار آب شبکه حساس بود، هرچند که رضایت‌مندی مشترکان از خدمات رسانی شرکت آب و فاضلاب نیز تا حدودی مصرف طولانی مدت آنها را تحت تاثیر خود داشت. بنابراین، تفاوتهای کمّی و کیفی مشاهده شده در عوامل تاثیرگذار بر مصرف آب شرب، در بازه‌های زمانی مختلف و تعدد این عوامل، نیاز به نگاه ویژه‌تر و دقیق‌تر به مصرف آب مشترکان و بازنگری سیاست‌های مدیریتی در بخش تامین و تقاضای آب شرب شهری کشور را ضروری می‌نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating Efficient Parameters on Municipal Drinking Water Using GAMA Test Technique

نویسندگان [English]

  • Hossein Ansary 1
  • Narges Salehnia 2
چکیده [English]

In recent decades, population increasing and its structural changings have doubled municipal water demand management importance and forecast. Proper planning and management is subject to the most important information about households. So, considering the physical and behavioural characteristics of consumers is necessary in different conditions. In this research, classifying influential characteristics and interaction of Neyshabour households in Razavi Khorasan on municipal water consumptions during different periods presented. Many influential parameters has considered in recent investigations then, Gamma Test abilities used for nearly all 27 variables, in a non-parametric space. Results showed that house age, landscape, cooler capacity, high-consumption appliances, number of connections, number of people in each connection, land area,
commercial and residential arena, advantage of zone, booster pump, water pressure during the year and summer, maximum temperature, rainfall, average price of drinking water and one- lag consumption were the most important parameters affecting on two-months consumption. Yearly water consumption influenced by house age, landscape, seizin type, high-consumption appliance capacity, land area, residential area, booster pump, metering change, water pressure during the year and summer time, minimum and average temperature, and average price of drinking water. Despite previous studies, long run average consumption for consumers is sensitive to water pressure. However, consumer satisfaction about water and wastewater corporation services has affected their long run consumption. Therefore, qualitative and quantitative differences in influential affecting water consumption must devise in management policies for municipal water demand and supply.
 

کلیدواژه‌ها [English]

  • Drinking Water Consumption
  • Gamma Test
  • Influential Factors on Consumption
  • Demand Management
1- Johansson, R. (2000). “Pricing irrigation water: A literature survey.” Policy Research Working Paper, Translated by Iranian Committee on Irrigation and Drainage (IRNCID), 2003, Vol., 1. (In Persian)

2- Akbari, H., and Mohammadi Dinani, M. (2000). “Estimating the potable water demand in city of Kerman.”
J. of Quarterly Iranian Economic Research, 2(7), 67-78. (In Persian)

3- Shaoliu, L. (2000). Water pricing towards sustainability of water resources: A case study in Beijing, Sweden.

4- ICWE. (1992). “The dublin statement on water and sustainable development.” International Conference on Water and the Environment,World Meteorological Organization, Geneva.

5- Downward, S.R., and Taylor, R. (2007). “An assessment of Spain’s programa AGUA and its implications for sustainable water management in the province of Almería.” J. Environ. Manag., 82, 277-289.

6- Gleick, P.H., Cain, N.L., Haasz, D., Henges-Jeck, C., Hunt, C., Kiparsky, M., Moench, M., Palaniappan, M., Srinivasan, N., and Wolff, G. (2004). The world’s water 2004-2005, the biennial report on freshwater resources, Island Press, Washington, D.C.

7- Memon, F.A., and Butler, D. (2006). “Water consumption trends and forecasting techniques.” Butler, D., Memon, F.A. (Eds.), Water demand management, IWA Publishing, London.

8- Van Vliet, B., Chappells, H., and Shove, E. (2005). Infrastructures of consumption, environmental innovation in the utility industries, Earthscan, London.

9- Tabesh, M., and Dini, M. (2010). “Daily urban water demand estimation using artificial neural networks, Case study: Tehran.” J. Water and Wastewater,  73, 84-95. (In Persian)

10- Tabesh. M.,  Dini, M., Khoshkholgh , A.J., and  Zahraie, B. (2008). “Estimation of Tehran daily water demand using time series analysis.” J. Iran-Water Resources Research, (2), 57-65. (In Persian)

11- Tabesh, M., Zahraie, B., and  Khoshkholgh , A.J. (2004).“Forecasting Tehran daily water demand using time series analysis.” Proceeding of 1st National Congress on Civil Engineering, Sharif University P.8.
(In Persian)

12- Tabesh, M., Goosheh, S., and Yazdanpanah, M.J. (2003). “Short-term water demand estimation using artificial neural networks.” The 4th Iranian Hydraulic Conference, Shiraz, Iran, 991-998. (In Persian)

13- Tabesh, M., Goosheh, S., and Yazdanpanah, M.J. (2002). “Presenting a relation for daily urban water consumption using artificial neural networks.” Proceeding of 1st National Congress on Civil Engineering, Sharif University. (In Persian)

14- Tabesh, M., Goosheh, S., and Yazdanpanah, M.J. (2004), “Short-term water demand estimation using artificial neural networks.” Proceedings of the IWA 4th World Water Congress and Exhibition, Marrakech, Morocco, 19-24.

15- WHO. (2000). Global water supply and sanitation assessment report, WHO/UNICEF.

16- WHO. (2003). Domestic water quality, service level and health, WHO.

17- Agthe, D., and Billings, B. (2002). “Water price influence on apartment complex water use.” J. Water Resour. Plan. Manag., 128, 366-369.

18- Bradley, R. (2004). “Forecasting domestic water use in rapidly urbanizing areas in Asia.” J. Environ. Eng. 130, 465-471.

19- Day, D., and Howe, C. (2003). “Forecasting peak demand: What do we need to know?.” Water Sci. Technol., 3, 177-184.

20- De Lourdes Fernandes Neto, M., Naghettini, M., Von Sperling, M., and Libanio, M. (2005). “Assessing the relevance of intervening parameters on the per capita water consumption rates in Brazilian urban communities.” Water Sci. Technol., 5, 8-15.

21- Durga Rao, K. (2005). “Multicriteria spatial decision analysis for forecasting urban water requirements: A case study of Dehradun city, India.” Land sc. Urban Plan., 71, 163-174.

22- Koo, J., Yu, M., Kim, S., Shim, S., and Koizumi, A. (2005). “Estimating regional water demand in seoul, south Korea, using principal component and cluster analysis.” Water Sci. Technol., 5, 1-7.

23- Martinez Espineira, R. (2000). Residential water demand in the Northwest of Spain, Environment Department. University of York, Heslington, York YO10 5DD, UK.

24- Renzetti, S. (2002). The economics of water demands, Kluwer Academic Publishers, Boston.

25- Whitcomb, J.B. (2005). Florida water rates evaluation of single-family homes, Prepared for and Funded by Southwest Florida Water Management District, St. Johns River Water Management District.  

26- Perera, B.J.C., Muttil, N., and Hasofer, M. (2009). “Climate corrected urban water use and estimation of water savings.” 18th World IMACS / MODSIM Congress, Cairns, Australia, 13-17.

27- Largo, F.M., Arlene B. I., and Cristina C. D. (1998). Understanding household water demand for metro cebu, Philippine Institute for Development Studies.

28- Mousavi, S., Mohammadi, H., and Boostani, F. (2009). “Estimation of water demand function for urban households: A case study in city of Marvdasht.”J. Water and Wastewater, 74, 90-94. (In Persian)

29- Syme, G., Shao, Q., Po, M., and Campbell, E. (2004). “Predicting and understanding home garden water use.” Land sc. Urban Plan, 68, 120-128.

30- Kostas, B., and Chrysostomos, S. (2006). “Estimating urban residential water demand determinants and forcasting water demand for athens metropolitan area, 2000-2010.” Panteion University, South-Eastern Europe Journal of Economics, 1, 47-59.

31- Stefánsson, A., Koncar, N., and Jones, A.J. (1997). “A note on the Gamma test.” Neural Computing and Applications, 5 (3), 131-133.

32- Kemp, S.E. (2006). “Gamma test analysis tools for non-linear time series.” Ph.D Thesis University of Glamorgan Wales UK.

33- Dunn, G., and Everitt, B.S. (2001). Applied multivariate data analysis, Published by Oxford University Press US.

34- Evans, D., and Jones, A.J. (2002b). “A proof of the Gamma test.” Proc.Roy. Soc. Lond. Series A, 458,
2759-2799.

35- Corcoran, J.J., Wilson, I.D., and Ware, J.A. (2003). “Predicting the geo-temporal variations of crime and disorder.” International Journal of Forecasting, 37 (1), 623-634.

36- Salehnia, N., Ansari, H., Falahi, M. A., and Davari, K. (2009). “Evaluating elasticity of income and price on water demand with Pollak – Wales method.” J. Water and Wastewater, 34-44. (In Persian)

37- Salehnia, N., Falahi, M. A., Ansari, H., and Davari, K. (2007). “Study of municipal drinking water tariffs and its effect on water consumption pattern, case study: City of Neyshabour.” J. Water and Wastewater, 63, 50-59. (In Persian)

38- Parsconsult Consulting Engineering Company. (2004). Plant of unaccounted water in Neyshabour, Tehran

39- Ruijsa, A., and Zimmermanna, A. (2008). “Demand and distributional effects of water pricing policies.” Ecological Economics, 6(6), 506-516.

40- Xayavong, V., and Burton, M. (2008). “Estimating urban residential water-demand with increasing block prices: The case of Perth, western Australia.” 52nd Annual Conference of the Australian and Resource Economics Society Ridges Lakeside Hotel, Canberra.

41- Rostam Abadi Sofla, A. (2000). “Estimating the water consumption equation for summer and winter seasons in Tehran.” J. of Plan and Budget, 5(54), 77-106. (In Persian)