تعیین میزان بهینه پارامترهای مؤثر در حذف رنگزاهای راکتیو توسط واکنش‌های فتوکاتالیستی با استفاده از نانو ذرات TiO2 تثبیت شده بر بستر بتن

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس، تهران

2 دانشیار، دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس، تهران

3 استاد، دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس، تهران

چکیده

در این تحقیق بررسی پارامترهای مؤثر در حذف دو رنگزای آزو RB5 و RR120 به‌روش فتوکاتالیستی توسط نانو ذرات TiO2 تثبیت شده بر بستر بتنی مورد مطالعه قرار گرفت و اثر پارامترهای مؤثر شامل میزان فتوکاتالیست، pH اولیه، غلظت آلاینده و توان UV بررسی شد. نتایج نشان داد افزایش غلظت رنگزا و کاهش pH باعث کاهش نرخ رنگبری می‌شود. همچنین به‌منظور مقایسه رنگبری، حذف حلقه‌های بنزنی و فنلی به‌ترتیب در طول موجهای UV254 و UV310 نانومتر مورد بررسی قرار گرفت. نتایج تحقیق نشان داد نرخ حذف RB5 بیش از RR120 بود به‌طوری که بازده حذف آن در شرایط بهینه پس از 5/2 ساعت به حدود 9/99 درصد رسید.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of Optimum Amounts of Effective Parameters in Reactive Dyes Removal Using Photocatalytic Reactions by Immobilized TiO2 Nano Particles on Concrete Surface

نویسندگان [English]

  • Maryam Ghodsian 1
  • Bita Ayati 2
  • Hossein Ganjidoust 3
چکیده [English]

In this study the effective parameters in removal of two azo dye including Reactive Black 5 (RB5) and Reactive Red 120 (RR120) using photocatalytic method (by TiO2 nanoparticles immobilized on the concrete support) were investigated. The effect of parameters such as photocatalyst amount, initial pH, dye concentration and UV power were determined. The results showed that increase of dye concentration and decrease in pH caused decrease in dye removal rate. In order to compare dyes removal, benzene and phenol rings removal were measured in UV254 and UV310 nm wavelengths, respectively. The results in the optimum conditions showed that RB5 removal rate was more than RR120 as the removal rate was reached to 99 percent after two and half hours.

کلیدواژه‌ها [English]

  • Dye removal
  • RB5
  • RR120
  • TiO2 nanoparticles
  • Photocatalytic Process
1- Arslan, I., Balcioglu, I.A., and Bahnemann, D.W. (2000). “Advanced chemical oxidation of reactive dyes in simulated dye house effluents by ferrioxalate-fenton/UV-A and TiO2/UV-A processes.” J. of Dyes Pigments, 47, 207-218.

2- Anjaneyulu, Y., Chary, N.S., and Raj, D.S.S. (2005). “Decolorization of industrial effluents-available methods and emerging technologies-a review.” J. of Rev. Environ. Sci. Biotechnol., 4, 245-273.

3- Koprivanac, N., and Kusic, H. (2009). Hazardous organic pollutants in colored wastewaters, Nova Science Publishers, Inc., New York, USA.

4- Zamora, P.P., Kunz, A., Moraes, S.G., Pelegrini, R., Moleiro, P.C., Reyes, J., and Duran, N. (1999). “Degradation of reactive dyes I. a comparative study of ozonation, enzymatic and photochemical processes.” J. of Chemosphere, 38, 835-852.

5- Georgiou, D., Melidis, P., Aivasidis, A., and Gimouhopoulos, K. (2002). “Degradation of azo reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide.” J. of Dyes Pigments, 52, 69-78.

6- Oliver, J.H., Hyunook, K., and Pen-Chi, C. (2000). “Decolorization of wastewater.” J. of Crit. Rev. Environ. Sci. Technol., 30, 499-505.

7- Benguella, B., and Yacouta-Nour, A. (2009). “Adsorption of bezanyl red and nylomine green from aqueous solutions by natural and acid-activated bentonite.” J. of Desalination, 235, 276-292.

8- Klavarioti, M., Mantzavinos, D., and Kassinos, D. (2009). “Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes.” J. of Environ. Int., 35, 402-417.

9- Sadik, W.A.A., and Nashed, A.W. (2008). “UV-induced decolorization of acid alizarine violet N by homogeneous advanced oxidation processes.” J. of Chem. Eng., 137, 525-528.

10- Martínez-Huitle, C.A., and Brillas, E. (2009). “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review.” J. of Appl. Catal., J. of B-Environ., 87, 105-145.

11- Gaya, U.I., and Abdullah, A.H. (2008). “Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems.” J. of Photochem. Photobiol. C: Photochem., Rev., 9, 1-12.

12- Mahmoodi, N.M., Arami, M., Limaee, N.Y., Gharanjig, K., and Ardejani, F.D. (2006). “Decolorization and mineralization of textile dyes at solution bulk by heterogeneous nanophotocatalysis using immobilized nanoparticles of titanium dioxide.” J. of Colloid Surface A: Physicochem. Eng. Aspects, 290, 125-131.

13- Hunger, K. (2003). Industrial Dyes: Chemistry, Properties and Applications, John Wiley and Sons-VCH, New York, USA.

14- Watts, M.J., and Cooper, A.T. (2008). “Photocatalysis of 4-chlorophenol mediated by TiO2 fixed to concrete surfaces.” J. of Solar Energy, 82, 206-211.

15- Okitsu, K., Iwasaki, K., Yobiko, Y., Bandow, H., Nishimura, R., and Maeda, Y. (2005). “Sono-chemical degradation of azo dyes in aqueous solution: A new heterogeneous kinetics model taking into account the local concentration of OH radicals and azo dyes.” J. of Ultrasonics Sonochemistry, 12, 255-262.

16- Tanaka, K., Padermpole, K., and Hisanaga, T. (2000). “Photocatalytic degradation of commercial azo dyes.” J. of Water Research, 34, 327-333.

17- Bakaullah, S.B., Rauf, M.A., and Ashraf, S.S. (2007). “Photocatalytic decoloration of coomassie brilliant blue with titanium oxide.” J. of Dyes and Pigments, 72, 353-356.

18- Concalves, M.S.T., Oliveira-Campos, A.M.F., Pinto, M.M.S., Plasencia, P.M.S., and Queiroz, M.J.R.P. (1991). “Photochemical treatment of solutions of azo dyes containing TiO2.” J. of Chemosphere, 39, 781-786.

19- Baran, W., Makowski, A., and Wardas, W. (2008). “The effect of UV radiation absorption of ationic and anionic dye solutions on their photocatalytic degradation in the presence of TiO2.” J. of Dyes Pigm., 76, 226-230.

20- Neppolian, B., Choi, H.C., Sakthivel, S., Arabindoo, B., and Murugesan, V. (2002). “Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4.” J. of Chemosphere, 46, 1173-1181.

21- Joanna, G., and Morawski, A.W. (2002). “Photocatalytic decomposition of azo dye acid black 1 in water over modified titanium dioxide.” J. of Applied Catalysis B: Environmental, 36, 45-51.

22- Damodar, R.A., Jagannathan, K., and Swaminathan, T. (2007). “Decolourization of reactive dyes by thin film immobilized surface photo-reactor using solar irradiation.” J. of Solar Energy, 81, 1-7

23- Joanna, G., and Morawski, A.W. (2002). “Photocatalytic decomposition of azo dye acid black 1 in water over modified titanium dioxide.” J. of Applied Catalysis B: Environmental, 36, 45-51.

24- Neppolian, B., Choi, H.C., Sakthivel, S., Arabindoo, B., and Murugesan, V. (2002). “Solar/UV-induced photocatalytic degradation of three commercial textile dyes.” J. of Hazardous Materials, 89, 303-317.

25- Nayebi Gavgani, R. (2012). “Acid dyes removal by the combination of immobolized nano TiO2 on concrete and biological processes.” M.Sc. Thesis, Tarbiat Modares University, Tehran

26- Damodar, R.A., Jagannathan, K., and Swaminathan, T. (2007). “Decolorization of reactive dyes by thin film immobilized surface photo-reactor using solar irradiation.” J. of Solar Energy, 81, 1-7.