Limitations of Precipitation and Corrosivity Indices in the Cooling Water Systems

Shiraz University, Shiraz, Iran

Abstract
This paper explains the importance of measuring the precipitation and water corrosivity in cooling water systems. The limitations of Raisner and Langlier indexes have been explained. Then the benefits of Puchorius index in determining the precipitation and water corrosivity have been investigated. Finally, as a case study, the limitations of Raisner and Langlier indexes against Puchorius index have been discussed for the cooling water system of hot rolling of Mobarake Steel Complex.
روش های متفاوت برای پرداختن این که آب در یک سیستم خشک کننده روس‌گذاری یافت است یا تمامی به ایجاد خریدرگی دارد، وجود دارد. درک این لحظه ضروری است که این روشهای معمولاً بر مبنای تعادلات شیمیایی استوار هستند و فقط می‌تواند مشکل شکن که چنین ثابتی خودآگاه ایجاد، ولی دریافتی مطالعه را بررسی نمی‌کند. ساده‌ترین روشهای برای بررسی این مشکل کارگیری آنالیز آب در تعیین تمایل به

میکروپتولوژی است. در روس‌گذاری، معمولاً شامل تکیه‌گاه مهدی درون‌بازی (مثل CaCO₃، CaSO₄، Fe₂O₃) و سایر بیولوژیکی مشابه است. بنابراین، می‌تواند از نظر هنرمندان ایجاد نمایه‌ای از سیستم خشک کننده و اسکست بودن این درون‌بازی در طیک کنترل تغییر ویژگی‌های آب و با استفاده از ممانعت خود در این صورت می‌گردد.

ممانعت کننده مواد شیمیایی هستند که در نقوش مولکولی نشان داده شده. اضافه شدن به زندگی، کاهش داده یا از آن پیش گیری می‌کند. چگونه عملکرد یک ممانعت کننده را می‌توان به این صورت بیان کرد که با به صورت یک فیلم تراز بر روی سطح ماده در حال خوردن شدن جذب می‌شود. با موج‌شناسی یک محصول حفظ خوردنی ضخیم بر سطح فلز می‌توانید با تغییر خصوصیات محیطی تولید روس‌گذاری المحتوای محلول یافته در این سیستم‌ها، از روش‌های تصفیه شیمیایی آب و کاربرد ممانعت‌کننده‌های روس‌گذاری کاملاً محاسبه کنند.

استفاده می‌شود [1] که تحلیل آنها در استیل مختصر است. بررسی عملکرد روس‌گذاری آب مرطوب مجموعه را از این لحاظ تحت بررسی قرار داد و صورت از اعمال روش‌های مشکلات فوق را به دردسر رساند. در این راستا، چند حاصل مقایسه‌ای از جمله شاخص‌های رایانه‌ای، لانگری و پوکوریوس برای سنجش وضعیت شیمیایی آب از نقطه نظر تأمینی به خودی‌گذاری روس‌گذاری مورد استفاده قرار می‌گیرد. در این‌جمله، در دلیل قدم‌گذاری توانایی اجرای نشانه‌های در صنایع ایران تولید کرد.

است. اما در شرایط خاصی این اندازه‌های مقایسه مناسب توجه و پاسخ آن قابل استفاده می‌باشد. در این شرایط استفاده از مدیریت پوکوریوس را گذاشتیم. ولی در این‌جمله به دلیل عدم آشنا بودن با صنعتی مانند، شایع‌تری‌ها به صورت مختصر به معرفی این شاخص‌ها پرداخته‌سپس نقاط ضعف اندازه‌ها را تاکید نکرد. به روش‌های پوکوریوس در آب خشک کننده نورد گرم جمعیت فولاد مبارکه را نشان داده می‌شود.

محل خریدرگی و روس‌گذاری آب‌های خشک کننده

عوامل از آب به پرداختن بیان اصلی در سیستم‌های خشک کننده استفاده می‌شود. منابع اصلی این آب، رودخانه‌ها، دریاچه‌ها و در زمین‌های صحرایی می‌باشد. با توجه به نوع مسائل تأمین آب، تنها به مقایسه سیستم‌های روس‌گذاری استفاده می‌شود. این سیستم‌ها در طول مدت بسیاری از دهه‌ها به‌طور مداوم در این شیمیایی آب و با استفاده از ممانعت‌کننده مواد به صورت می‌گردد.

ممانعت کننده مواد شیمیایی هستند که هگرگاه در غلظت‌های کم به یک محیط خورده، اضافه شود، و بایستی تا آن محیط را کاهش داده یا از آن پیشگیری می‌کند. چگونه عملکرد یک ممانعت کننده را می‌توان به این صورت بیان کرد که با به صورت یک فیلم تراز بر روی سطح ماده در حال خوردن شدن بسیار می‌شود. با موج‌شناسی یک محصول حفظ خوردنی ضخیم بر سطح فلز می‌توانید با تغییر خصوصیات محیطی تولید روس‌گذاری المحتوای محلول یافته در این سیستم‌ها، از روش‌های تصفیه شیمیایی آب و کاربرد ممانعت‌کننده‌های روس‌گذاری کاملاً محاسبه کنند. استفاده می‌شود [1] که تحلیل آنها در استیل مختصر است. بررسی عملکرد روس‌گذاری آب مرطوب مجموعه را از این لحاظ تحت بررسی قرار داد و صورت از اعمال روش‌های مشکلات فوق را به دردسر رساند. در این راستا، چند حاصل مقایسه‌ای از جمله شاخص‌های رایانه‌ای، لانگری و پوکوریوس برای سنجش وضعیت شیمیایی آب از نقطه نظر تأمینی به خودی‌گذاری روس‌گذاری مورد استفاده قرار می‌گیرد. در این‌جمله، در دلیل قدم‌گذاری توانایی اجرای نشانه‌های در صنایع ایران تولید کرد.

است. اما در شرایط خاصی این اندازه‌های مقایسه مناسب توجه و پاسخ آن قابل استفاده می‌باشد. در این شرایط استفاده از مدیریت پوکوریوس را گذاشتیم. ولی در این‌جمله به دلیل عدم آشنا بودن با صنعتی مانند، شایع‌تری‌ها به صورت مختصر به معرفی این شاخص‌ها پرداخته‌سپس نقاط ضعف اندازه‌ها را تاکید نکرد. به روش‌های پوکوریوس در آب خشک کننده نورد گرم جمعیت فولاد مبارکه را نشان داده می‌شود.
مواد و روش ها
در این تحقیق از اطلاعات دو دسته آزمایش های شیمیایی استفاده شد. برای اطمینان از دقیقت و کاربرد پذیری روشن ها، کلیه آزمایش ها بر اساس استانداردهای بین المللی و حداکثر در سه نوبت انجام گرفته که برای رعایت اختراع از شرح کامل روشن ها صرف نظر شده و صرفا شماره استاندارد آزمایشها در قسمت مناسب ذکر گردید. است. این آزمایشها به‌طور عمده در اندازه‌گیری و آنالیز شیمیایی آب خنک کنده شامل تغییرات مجموع جادوی محلول، دمایی شدن، سلولیتی و قلیولیت کل (Total Alkalinity، Ca، PH، TDS) آب (آم) و تغییرات سرعت خوردنگی در آب خنک کنده در حال ساتن با روش پلازامائوسون (12) همچنین برای شیمی‌سازی کامل در تغییرات سرعت خوردنگی از قسمتی از پروانه چسب زنی که در آب خنک کنده مشغول به کار بوده استفاده گردید.

نتایج و بحث
جدول 1 نتایج مربوط به آلاینده‌های شیمیایی آب تانک

<table>
<thead>
<tr>
<th>میزان آلاینده (میلی‌گرم بر لیتر)</th>
<th>میزان آلاینده (میلی‌گرم بر لیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>تربیت (آم)</td>
<td>تربیت (آم)</td>
</tr>
</tbody>
</table>

روش گذاری خوندارخانه با استفاده از روابط لانگلیر، رایزر و یک پروپوسیس است (6 و 8). این روابط به صورت زیر تعریف می‌شوند:

(1) انگلیر = pH – pHs
(2) انگلیر = 2pH – pH
(3) انگلیر = 2pH – pHC

لانگلیر یک روش برای پیشگویی از اشکال (pHs) از عدد به دست آمده در ان روش گذاری اثر محسوب می‌شود. این روش لانگلیر منفی بوده و pHs باعث حل ترکیبات کلسیم و واتر شده شک که در این حالت آب خوردن است. چنانچه pHs واقعی آب پیشتر از pHs دارد، آب دارای لانگلیر مثبت بوده و از گردبودن کلسیم اشکال جداول شده‌اند که در این حالت آب نسبت به این اسید است. این توجه به pHs افت واقعی آب از مقدار pHs داشت که این اشکال پیشتر در pHs این اشکال لانگلیری پیشتر در سیستم‌های بی‌سنگ یا گیاهان آب کاریس دارد. رایزر برای پیش‌گویی در مورد چگونگی وضعیت روابط گیا به‌کار می‌رود:

بوسن آب یک سیستم براساس pHs و pH به‌کار می‌رود. با کاربرد این شیمیایی خوندارخانه است. این کاربرد ارزش‌دهی می‌شود که می‌توان به‌طور درست و توانایی اطمینان و توانایی استفاده‌های آن روش برای انتخاب و سنجش داده‌ها در حال جریان که سرعت آب در آن‌ها بیشتر از 2 فوت بر ثانیه و یا 6/4 سانتیمتر بر ثانیه باشد، کاربرد داشته و یک شاخص بخصوص برخی از استراتژی گیری است.

مدت زمان زیادی است که کارخانه‌ها و پلاک‌ها باید تفاوت هایی بین سیستم خنک کندن سر و کار دارد. از شیمیایی یک پروپوسیس استفاده می‌شود. باید توجه داشت که در بسیاری از موارد شاخص روابط‌گذاری آب را نشان می‌دهد. در صورتی که شیمیایی یک پروپوسیس شاگرد خوردن، بوده‌اند. به‌طور میانی است و آزمایش‌های انجام شده، شکست در این روش مورد نیاز، منهای منطقه‌ای بین شاخص‌ها. در پیش‌گویی می‌تواند بر روی شیمیایی یک پروپوسیس توسط شیمیایی یک پروپوسیس برای آب‌هایی که آن‌ها به‌طور دیگر است. این امر آن است که pHs سیستم یک پروپوسیس مشغول به کار بوده استفاده گردید.
ترکیب شکل‌های 1 و 2 به دست آمده. مطابق تعیین دیده شده شاخص خوردنی مثبت باشد. دلیل بر رسوب‌گذاری بودن آب و یا بزگ‌تر بودن شاخص رایزر از عدم 4 دلیل بر خوردنی بودن آب است. براساس الگوی لانگلهی، آب تانک 115 نسبتا رسوب‌دار بوده و رسوب‌های بیشتری نسبت به خوردنی‌گذاری در دارد. در اینجا یک تناقض آگاهی در تحلیل اطلاعات دیده می‌شود که محدود دلیل آن نکار آمدی شاخص‌های رایزر و لانگلهی در شرایط شیمیایی و فیزیکی آب مورد مطالعه هستند. روش تعیین شاخص لانگلهی و قطع احتیاط کامل دارد که آب بالایی pH متدر داشته باشد. [۱] می‌شود به دلیل این که pH آب بالایی pH ابتدا با به‌کارگیری توانایی یک نمایشگر pH را برای ایجاد تعادل و بهبود خوردنی و رسوب‌گذاری پیشنهاد کرده‌اند [۱۴]. این مطلب در آب تانک ۱۱۵ دیده می‌شود و لذا انتخاب می‌رود که سرعت خوردنی پروانه در آب تانک به لحاظ شیمیایی سبب کم‌باشد. از سوی دیگر نتایج آزمون پلاریزاپسیون که برای تعیین سرعت خوردنی پروانه در آب در حال سکون انجام شده، سرعت خوردنی بین ۱ تا ۲ (mpy) را نشان می‌دهد. این امر به دست آمده. نشان دهنده سرعت خوردنی کم یا به‌ویژه دیگر خاصیت خوردنی ضعیف آب خنک‌کننده می‌باشد. یک نمونه از نتایج این آزمایش‌ها را که به صورت نمودار پلاریزاپسیون ترسیم شده، نشان می‌دهد.

\[
1\text{یک واحده خوردنی است به معنای هزای ایج در سال}
\]

جدول 1 - نتایج آنالایز مربوط به خوردنی بودن یا رسوب‌گذاری بودن آب

<table>
<thead>
<tr>
<th>قلیاتیت کل (ppm)</th>
<th>pH</th>
<th>سمی خیمی کلسیم (ppm)</th>
<th>کل مواد جامد معلق (ppm)</th>
<th>دمای آب (°C)</th>
<th>تاریخ نمونه‌برداری</th>
</tr>
</thead>
<tbody>
<tr>
<td>85</td>
<td>8/2</td>
<td>300</td>
<td>1421</td>
<td>30</td>
<td>1380/9/17</td>
</tr>
<tr>
<td>70</td>
<td>8/3</td>
<td>365</td>
<td>1526</td>
<td>48</td>
<td>1380/10/24</td>
</tr>
<tr>
<td>70</td>
<td>8</td>
<td>415</td>
<td>1020</td>
<td>27</td>
<td>1380/11/27</td>
</tr>
<tr>
<td>70</td>
<td>8/3</td>
<td>245</td>
<td>974</td>
<td>30</td>
<td>1380/12/18</td>
</tr>
<tr>
<td>80</td>
<td>8/3</td>
<td>205</td>
<td>853</td>
<td>30</td>
<td>1381/1/17</td>
</tr>
<tr>
<td>80</td>
<td>8/1</td>
<td>210</td>
<td>974</td>
<td>30</td>
<td>1381/1/17</td>
</tr>
<tr>
<td>100</td>
<td>8/3</td>
<td>300</td>
<td>1000</td>
<td>34</td>
<td>1381/3/18</td>
</tr>
<tr>
<td>100</td>
<td>8/1</td>
<td>652</td>
<td>515</td>
<td>30</td>
<td>1381/3/18</td>
</tr>
<tr>
<td>100</td>
<td>8</td>
<td>153</td>
<td>897</td>
<td>30</td>
<td>1381/4/24</td>
</tr>
<tr>
<td>95</td>
<td>8/4</td>
<td>135</td>
<td>580</td>
<td>30</td>
<td>1381/4/20</td>
</tr>
<tr>
<td>85</td>
<td>8/6</td>
<td>115</td>
<td>579</td>
<td>30</td>
<td>1381/4/18</td>
</tr>
<tr>
<td>85</td>
<td>8/4</td>
<td>135</td>
<td>579</td>
<td>30</td>
<td>1381/4/18</td>
</tr>
</tbody>
</table>
نتیجه‌گیری
از مورر مباحث توری و دستاوردهای آزمایش‌های انجام گرفته نتایج حاصل می‌شود: با توجه به اهمیت موضوع تشکیل رسوپ و خورده‌گی در سیستم‌های گاز شکننده، لازم است کیفیت آب‌های خنک‌گیر

شکل 1- تغییرات شاخص لانگلی در آب تانک

شکل 2- تغییرات شاخص راپیتر در آب تانک

شکل 3- تغییرات شاخص پوکوروس در آب تانک
شکل 4- نمونه‌ی پلازماسون قطعاتی از پروانچه‌ی آب‌نورد آزمایش در آب تانک

صحیح با قابلیت فشار ندارد، شاخص را از تغییر در این وضعیت معترف نمی‌نماید. با علت سرعت بالای آب در سیستم کنده، نرود گرم و نیز با بانده pH آب، استفاده از شاخص پوکوریوس مناسب نیست. با توجه به ملاحساتی به عمل گشته، مراجع

1- پیشتازی، س. ا. (۱۳۷۷). "نظر آب و کنترل خورگری در صنایع"، انتشارات ارکان اصفهان.
2- سید رضی، س. م. (۱۳۷۷). "کنترل خورگری در صنایع"، انجمن خورگری ایران.
3- معلم، ع. (۱۳۸۲). "بررسی عملکرد پیشرفت آب خنک کننده آب در نرودگرم مجتمع فولاد مبارکه و روش‌های کاهش آن".

پایان نامه کارشناسی ارشد، دانشکده مهندسی، دانشگاه شیراز.