Application of High Rate Stabilization Ponds for Treatment of Kermanshah City Slaughterhouse

Farzadkia, M. (Ph.D.)
Hamedan University of Medical Sciences

Abstract
Stabilization ponds have high capability for treating the wastewater with high organic and hydraulic loading. Hence this system is a popular means of wastewater treatment for certain industries such as slaughterhouses, dairies and food processing plants. The main objective of this study was to investigate the efficiency of stabilization ponds for treating a high organic load wastewater receiving effluent from a slaughterhouse plant in Iran. The efficiency of Kermanshah slaughterhouse wastewater treatment plant was studied over six months from September 2000 to March 2001. The general conditions and operation of the plant were considered and some wastewater treatment indexes such as pH, TSS, BOD₅, COD, coliform and fecal coliform in influent and effluent were determined. The quality of the plant effluent has significant difference with the standard limits recommended by Iranian Environmental Protection Agency. The average amounts of TSS, BOD₅, COD, total and fecal coliform in effluent were 280.67 mg/l, 353.17 mg/l, 580.5mg/l, 1.51*10⁶ MPN/100ml and 2.10*10⁵ MPN/100ml respectively. The results showed that the effluent could not be used for irrigation or discharged to surface water based on the recommended standard by Iranian Environmental Protection Agency. Also, the comparison of the average number of fecal coliform in effluent with the microbiological quality guideline of World Health Organization (WHO) showed that the effluent was not acceptable for use in restricted irrigation.
مقدمه
برکه‌های تنشیت در شمال ساده‌تلرین قرآنی‌های تصفیه‌ی فاضلاب قرار دارند. از مزایای آن‌ها می‌توان به راحتی سیال بالا در حد ارگانیسم‌های بیماری‌زا، شرکت‌پذیری در مقابل مواد سمی و باردار و هیدرولیک اثره‌کردن، و نیز امکان پیش‌بینی موج‌های مطلوب آن‌ها در تصفیه فاضلاب‌های پیرربا مسطحی تأیید فاضلاب‌های کشتارگاهی، صنايعی، شناور و کنسرو‌سازی است. [1 و 2] در حال حاضر تعداد بسیار زیادی از برکه‌های تنشیت فاضلاب در کشورهای آمریکا، فرانسه، آلمان، پرتغال، هند، پاکستان، اردن و تایلند ساختمان شده و به کار گرفته شده‌اند [3]. در ایران نیز تعدادی از این واحدها در شهرهای نظیر آراک، گيلانشهر و فوالدهشهر اصفهان ساخته شده، و اکنون بهره‌گیری از این واحدها در شهرهای دیگر نیز در دست مطالعه می‌باشد. در خصوص استفاده از برکه‌های تنشیت تمرکز برای تصفیه فاضلاب‌های صنعتی پربر نیز می‌توان به برکه‌های که در کشتارگاه‌های دام کرمشاهی احداث شده، اشاره نمود [4].

کشتارگاه‌های دام، یکی از مراکز اصلی تولید محصولات غذایی گرشی است که بدلیل تولید فاضلاب‌های با آلیاژ هموار مورد توجه محیط زیست قرار دارد. دغدیر بهبودی فاضلاب‌های کشتارگاهی، آلودگی‌های آب، خانه‌ها و محصولات کشاورزی را در بی داشته‌اند و اثرات زیانباری بر بهداشت عمومی مردم منطقه دارد [5]. اساسی‌ترین اقدام در جهت کنترل آلودگی این مراکز احداث تصفیه‌خانه‌ای فاضلاب و نظارت دقیق بر عملکرد آن‌ها می‌باشد [6 و 9] و مطالعات انجام شده در خارج از کشورها نیز آن‌ها را بهبود گرفته‌اند. [10] اما اطلاعات جامعی از عملکرد این واحدها در دست نیست. براساس این شرایط باید از نظریه‌الزمان‌کارایی برکه‌های تنشیت در تصفیه فاضلاب‌های پیرربا عملکرد تصفیه‌خانه‌ای فاضلاب کشتارگاه‌های دام کرمشاهی با عنوان یک واحدهای مورد مطالعه قرار گرفت.

کشتارگاه‌های کرمشاه دارای سال ۱۳۶۸ در زمینه‌ی به‌سرعت ۱۵ هکتار با زیربنا ۱۳۰۰ متراً مربع و احتمالاً در دست‌نیست، برای عملکرد باید از نظریه‌الزمان‌کارایی برکه‌های تنشیت در تصفیه‌خانه‌ی فاضلاب، عملکرد تصفیه‌خانه‌ای فاضلاب کشتارگاه‌های دام کرمشاهی با عنوان یک واحدهای مورد مطالعه قرار گرفت.

روش تحقیق
این تحقیق به مدت شش ماه از مهر تا آبان انجام شد. [11] بر روی فاضلاب وردی و سپس خروجی تصفیه‌خانه فاضلاب کشتارگاه کرمشاه انجام شد. برای بررسی عملکرد این تصفیه‌خانه ترتیب انتخاب شد که کاوه به طور همزمان یک نمونه از فاضلاب وردی و یک نمونه از سپس خروجی برداشت شود و مقرره نمونه‌ها در چهار خنک سریع‌تر به آزمایشگاه‌های بهداشت‌دانشگاه علوم پزشکی همدان منتقل شدند.

در این تحقیق پارامترهای (TSS، pH، COD (آکسیژن خواهی پوست‌پریشی‌یک پنج روز)، BOD۵ (آکسیژن خواهی پوست‌پریشی‌یک تک)، (TC (کل بakteری‌های کلیفر)، FC (کل بakteری‌های کلیفر مصرف‌یک)، (کل بakteری‌های کلیفر مصرف‌یک) در نمونه‌ها مورد بررسی قرار گرفتند. کلیه نمونه‌ها در آزمایش‌های آلاینده و پزشکی تهیه شدند و در چهار خنک سریع‌تر به آزمایشگاه‌های بهداشت‌دانشگاه علوم پزشکی همدان منتقل شدند.

۱۱

شماره ۵۱ - سال ۱۳۸۳
دبیانچه‌ها در آزمایش آنالیزی‌های انجم شده بر روی پساب خروجی از تصفیه‌خانه فاضلاب در جدول 2 آنالیز تأتین شده است. آنالیز BODs, TSS, COD, تأتین شده در جدول 2 آنالیز تأتین شده است. آنالیز BODs, TSS, COD, pH, MPN/100 ml, T-Test، به کمک Minitab، آزمون آماری گردید.

جدول 1 - نتایج آنالیز فاضلاب و رودی به پرکه‌های تنبیت

<table>
<thead>
<tr>
<th>ابتکار</th>
<th>معیار</th>
<th>میانگین</th>
<th>استاندارد</th>
<th>گسترده</th>
<th>دی</th>
<th>آذر</th>
<th>آبان</th>
<th>مهر</th>
<th>پارامتر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7/8</td>
<td>7/28</td>
<td>7/40</td>
<td>7/55</td>
<td>7/82</td>
<td>7/82</td>
<td>7/84</td>
<td>7/84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9/44</td>
<td>11/2</td>
<td>12/11</td>
<td>12/4</td>
<td>12/11</td>
<td>12/6</td>
<td>12/5</td>
<td>12/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26/44</td>
<td>36/2</td>
<td>39/15</td>
<td>38/3</td>
<td>40/5</td>
<td>51/1</td>
<td>54/0</td>
<td>39/7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49/43</td>
<td>51/2</td>
<td>52/3</td>
<td>53/5</td>
<td>54/0</td>
<td>52/2</td>
<td>53/5</td>
<td>39/7</td>
</tr>
</tbody>
</table>

جدول 2 - نتایج آنالیز پساب خروجی از پرکه‌های تنبیت

<table>
<thead>
<tr>
<th>ابتکار</th>
<th>معیار</th>
<th>میانگین</th>
<th>استاندارد</th>
<th>گسترده</th>
<th>دی</th>
<th>آذر</th>
<th>آبان</th>
<th>مهر</th>
<th>پارامتر</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>7/4</td>
<td>7/27</td>
<td>7/55</td>
<td>7/24</td>
<td>7/24</td>
<td>7/55</td>
<td>7/55</td>
<td>pH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26/3</td>
<td>30/2</td>
<td>35/18</td>
<td>30/3</td>
<td>30/3</td>
<td>30/3</td>
<td>30/3</td>
<td>30/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>51/0/8</td>
<td>52/6</td>
<td>52/6</td>
<td>52/6</td>
<td>52/6</td>
<td>52/6</td>
<td>52/6</td>
<td>52/6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1/51/0</td>
<td>1/51/0</td>
<td>1/51/0</td>
<td>1/51/0</td>
<td>1/51/0</td>
<td>1/51/0</td>
<td>1/51/0</td>
<td>1/51/0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9/45/0</td>
<td>9/45/0</td>
<td>9/45/0</td>
<td>9/45/0</td>
<td>9/45/0</td>
<td>9/45/0</td>
<td>9/45/0</td>
<td>9/45/0</td>
</tr>
</tbody>
</table>

* میانگین TC و میانگین هندسی است.
جدول 3- میزان جذب آلاینده‌های مورد سنجش در پرکه‌های تیتاب (درصد)

| پارامتر | آب آور | آب ااذ | آب آبی | آب پلو | آب ترش | آب پلاک | آب چرب | آب شارش | آب نیمه | آب سیاه | آب قهوه‌ای | آب کاهی | آب شیرین | آب شیرین
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>تسمیل</td>
<td>95/8</td>
</tr>
<tr>
<td>آبتر</td>
<td>85/0</td>
</tr>
<tr>
<td>آب سبز</td>
<td>85/0</td>
</tr>
<tr>
<td>آب خاکی</td>
<td>85/0</td>
</tr>
</tbody>
</table>

پارامترهای TSS، COD، BOD₅، TSS و COD توسط آزمون‌های آماری استانداردهای پایداری که در پرسش‌های منطقه‌ای آماده‌سازی شده نشان دهنده میزان بالایی ارتباط با تغییرات محیطی داشته‌اند، داده شده‌اند. خواص آب‌های تیتاب، که از دریای ساحلی و کشوری تهیه می‌شوند، با داشتن جثه‌ای بزرگتر از رودخانه‌ها به کلان‌شهرهای بزرگی که در آنها مصرف آب و تولید نیازمندی‌های بیشتری دارند، میزان آب‌های تیتاب را در این خصوص حذف می‌دهد. در تحقیقات پیش‌گیرانه مصرف‌های بیشتری و یا دفع پساب به آب‌های سطحی مورد توجه قرار نگرفته است.

بحث و تحقیق گری

بررسی کارایی پرکه‌ها

پرسش‌های آماری برخواسته در مورد معنودور توقف، نمودار BOD₅ و COD توسط اندازه‌گیری میزان آلاینده‌های بیش از ۸۰٪ نشان داده که در این مناطق آلاینده‌های بیشتری از آن‌ها که در پرسش‌های آماری نشان داده که در این مناطق آلاینده‌های بیشتری از آن‌ها

میزان آلاینده‌های بیش از ۸۰٪ نشان داده که در این مناطق آلاینده‌های بیشتری از آن‌ها که در پرسش‌های آماری نشان داده که در این مناطق آلاینده‌های بیشتری از آن‌ها

میزان آلاینده‌های بیش از ۸۰٪ نشان داده که در این مناطق آلاینده‌های بیشتری از آن‌ها که در پرسش‌های آماری نشان داده که در این مناطق آلاینده‌های بیشتری از آن‌ها که در پرسش‌های آماری نشان داده که در این مناطق آلاینده‌های بیشتری از آن‌ها که در پرسش‌های آماری نشان داده که در این مناطق آلاینده‌های بیشتری از آن‌ها که در پرسش‌های آماری نشان داده که در این مناطق آلاینده‌های بیشتری از آن‌ها که در پرسش‌های آماری نشان داده که در این مناطق آلاینده‌های بیشتری از آن‌ها که در پرسش‌های آماری نشان
شکل 1- مقایسه میانگین حساسیت آلت‌های آب‌زایی در پساب خروجی با مقدار استاندارد

این شکل نشان می‌دهد که میانگین هندسی مقدار در پساب خروجی با استاندارد استفاده از پساب در آب‌زایی (سازمان حفاظت محیط زیست ایران) = STANDARD1

استاندارد دفع پساب به آب‌های سطحی (سازمان حفاظت محیط زیست ایران) = STANDARD2

شکل 2- مقایسه میانگین هندسی لگاریتم تعداد باکتری‌های کلیفرم در پساب خروجی با مقدار استاندارد

این شکل نشان می‌دهد که میانگین هندسی مقدار در پساب خروجی با استاندارد استفاده از پساب در آب‌زایی (سازمان حفاظت محیط زیست ایران) = STANDARD1

استاندارد دفع پساب به آب‌های سطحی (سازمان حفاظت محیط زیست ایران) = STANDARD2

جدول 2- استانداردهای پساب خروجی تصمیم‌گیری خانه فاضلاب (سازمان حفاظت محیط زیست ایران)

<table>
<thead>
<tr>
<th>مصرف آب‌زایی</th>
<th>تخلیه به چاه جاذب</th>
<th>تخلیه به آب‌های سطحی</th>
<th>آلی‌نده</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>-</td>
<td>40</td>
<td>TSS (mg/l)</td>
</tr>
<tr>
<td>200</td>
<td>30</td>
<td>60</td>
<td>BOD5 (mg/l)</td>
</tr>
<tr>
<td>300</td>
<td>30</td>
<td>60</td>
<td>COD (mg/l)</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
<td>400</td>
<td>FC (MPN/100ml)</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>TC (MPN/100ml)</td>
</tr>
</tbody>
</table>
قابلیت دفع پساب به آب‌های سطحی مقایسه میزان آلودگی در پساب خروجی با استانداردهای دفع پساب به آب‌های سطحی سازمان حفاظت محیط زیست ایران در شکل‌های ۱ و ۲ نشان می‌دهد که در اکثر موارد مقدار آلودگی این آلودگی محلی می‌باشد. در پساب مقدار نسبی نمایید.
نتایج آنالیزهای آماری نشان داد که در تمامی موارد بین کاهش پساب به آب‌های سطحی استانداردهای دفع پساب به آب‌های سطحی اختلاف معنی‌داری وجود دارد. اگرچه این نتایج به ترتیب پساب خروجی در آن در نظر گرفته شده و برخورد گام‌های مصرف حفاظت محیط زیست کشور به موجب آلودگی آب است، رویکردی که مورد اجرا گزارش نشان می‌دهد. در این تحقیق، قراردادهای قدردانی می‌گردد.

مطالعات انجام شده بر روی نکات تشتیت فاضلاب این کشتارگاه می‌تواند این نتایج را بررسی در بیشترین حمایت کامل شده باشد. سیاست‌گذاری از همکاری خانم طبی خورانی کارشانس محترم بهداشت محیط دانشگاه علوم پزشکی کرمانشاه و آقای حسن صفری دوست کارشانس محترم بهداشت محیط دانشگاه علوم پزشکی همدان در انجام این تحقیق صمیمانی قدردانی می‌گردد.

مراجع

4- مهندس مشاور ری. آ/ (۱۳۷۷). "کارگاه طراحی اولین در طرح نصبی فاضلاب با استانداردهای ایران". تألیف: آقای حسن صفری دوست کارشانس. تهران.
5- آقای حسن صفری دوست کارشانس (۱۳۷۷). "اصول طراحی و ساخت و تاسیسات فاضلاب با استانداردهای ایران". تألیف: آقای حسن صفری دوست کارشانس. تهران.
6- زمان‌های بدون پساب چهارین (۱۳۸۵). "پردازش و تربیت فاضلاب در اصل طراحی این". ترجمه: نام برخی کتاب‌ها، ر. انتشارات سیما سرا.