مکانیابی بهینه ایستگاههای پایش در شبکه توزیع آب شهری با استفاده از الگوریتم جامعه مورچه‌ها

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد مدیریت منابع آب، دانشگاه صنعتی امیرکبیر

2 استادیار دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی امیرکبیر

3 استاد دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران

چکیده

محدودیت بودجه و هزینه‌های ابزار پایش از یک طرف و اهمیت کنترل کیفی آب شبکه به لحاظ آلودگیها و به خصوص رویدادهای خاص از طرف دیگر، سبب شده است تا استقرار بهینه ایستگاههای پایش در شبکه‌های آب شهری مورد توجه قرار گیرد. برای انتخاب مکان بهینه استقرار ایستگاههای نمونه‌برداری لازم است تا یک مدل بهینه‌سازی تهیه شود. در این تحقیق، این مدل به وسیله الگوریتم جامعه مورچه‌ها تهیه شده و برای یک مسئله کلاسیک که در تحقیقات قبلی از آن استفاده شده است مورد بررسی قرار گرفته است.گسسته بودن فضای تصمیم از یک طرف و تعداد کثیری از متغیرهای صفر و یک در سیستم مدل‌سازی از طرف دیگر، استفاده از الگوریتم جامعه مورچه‌ها را بسیار توجیه‌پذیر کرده است. ضمن آنکه تنوع جوابهای ایجاد شده به کمک این الگوریتم، امکان تصمیم‌گیری با توجه به محدودیتهای مختلف اقتصادی، فیزیکی و ... را فراهم می‌سازد.

کلیدواژه‌ها


عنوان مقاله [English]

Optimum Layout for Water Quality Monitoring Stations through Ant Colony Algorithm

نویسندگان [English]

  • Amin Afshar 1
  • Reza Maknoon 2
  • Abbas Afshar 3
1 M.Sc. of Water Resources Management, Amirkabir University of Technology
2 Assistant Professor, Faculty of Civil and Environmental Engineering, Amirkabir University of Technology
3 Professor, Faculty of Civil Engineering, Iran University of Science and Technology
چکیده [English]

Due to the high cost of monitoring systems, budget limitations, and high priority given to water quality control in municipal networks, especially for unexpected events, optimum location of monitoring stations has received considerable attention during the last decade. An optimization model needs to be developed for the desirable location of monitoring stations. This research attempts to develop such a model using Ant Colony Optimization (ACO) algorithm and tires to verify it through a bench-mark classical example used in previous researches. Selection of ACO as optimizer was fully justified due to discrete decision space and extensive number of binary variables in modeling system. Diversity of the policies derived from ACO may facilitate the process of decision making considering the social, physical, and economical conditions.

کلیدواژه‌ها [English]

  • Monitoring Station
  • Water Distribution Network
  • Water Quality
  • Ant Colony Algorithm
  • optimization
1- Lee, B.H., and Deininger, R.A. (1992). “Optimal locations of monitoring stations in water distribution system.” J. Envir. Engrg., 118(1), 4-16.

2- Kumar, A., Kansal, M.L., and Arora, G. (1997). “Identification of monitoring stations in water distribution system.” J. Envir. Engrg., 123(8), 748-752.

3- Al-Zahrani, M.A., and Moied, K.h. (2003). “Optimizing water quality monitoring stations using genetic algorithms.” The Arabian Journal for science and Engineering, 28 (1B), 57-75.

4- Woo, H. M.,Yoon, J. H.,and Choi, D. Y.(2001). “Optimal monitoring sites based on water quality and quantity in water distribution systems.” Proc., Bridging the gap: Meeting the world's water and environmetal resources challenges,State of the Practice, World Water and Environmental Resources Congress,CD-ROM,ASCE,Reston,Va.

5- Kessler, A., and Ostfeld, A. (1998). “Detecting accidental contaminations in municipal water networks: Application.” Proc., Water Resources and the Urban Environment, 25th Annual Conf. on Water Resources Planning and Management, ASCE,New York, 272-278.

6- Ostfeld, A., and Kessler, A. (2001). “Protecting urban water distribution systems against accidental hazards intrusions.” Proc., IWA, 2nd Conf., CD-ROM, IWA.

7- Bahadur, R., Pickus, J., Amstutz, D., and Samuels, W. (2001). “A GIS based water distribution model for Salt Lake City,UT.” Proc., 21st Annual ESRI Users Conf., (CD-ROM),Environmental Systems Research Institute,Redlands,Calif.

8- Bahadur, R., Samuels, W.B., Grayman,W., Amstutz, D., and Pickus, J.(2003). “Pipeline net: A model for monitoring introduced contaminants in a distribution system.” Proc., World Water & Environmental Resources Congress 2003 and Related Symposia, CD-ROM, ASCE,Reston,Va.

9- Dorigo, M. (1992). “Optimization, learning and natural algorithms.” Ph.D. thesis, Politecnico di Milano,Milan,Italy.

10- Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). From natural to artificial swarm intelligence, Oxford University Press.

11- Dorigo, M., Di Caro, G., and Gambardella, L.M. (1999). “Ant algorithms for discrete optimization.” Artificial Life, 5(2),137-172.

12- Jalali, M.R., and Afshar, A. (2006). “Reservoir operation by ant colony optimization algorithms.” Iranian Journal of Science and Technology Transaction, 30 (B1), 107-117.

13- Gharaie, E., Afshar, A., Jalali, M.R. (2006). “Static site layout optimization with ACO algorithm.” WSEAS Transaction on Systems, 4(5), 685-690.

14- Grasse, P.P. (1959). “La reconstruction dun id et les coordinations interindividuelles chez.” bellicosttermes natalensts et cubitermes sp. La theorie de la stigmergie: essai d’interpretation du comportement des termites constructeurs, Insects Sociaux 6,41-81.

15- Goss, S., Aron, S., Deneubourg, J.L., and Pasteels, J.M. (1989). “Self-organized shortcuts in the Argentine ant.” Naturwissenschaften, 76, 579-581.

16- Deneubourg, J.L., Aron, S., and Goss, S. (1990). “The self-organizing exploratory pattern of the Argentine ant.” J. Insect Behaviour, 3,159-168.

17- Pasteels, J.M., Deneubourg, J.L., and Goss, S. (1987). “Self-organization mechanisms in ant societies (I): trail recruitment to newly discovered food sources.” J. Experientia supplementum, 54, 155–175.