پیش‌بینی خشکسالی با استفاده از الگوریتم ژنتیک و مدل ترکیبی شبکه عصبی- موجکی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استاد گروه مهندسی عمران- آب، دانشکده فنی مهندسی عمران، دانشگاه تبریز

2 دانشجوی دکترای مهندسی عمران- آب، دانشکده فنی مهندسی عمران، دانشگاه تبریز

3 دانشیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز

چکیده

خشکسالی به‌عنوان یکی از مهم‌ترین بلایای طبیعی است که ممکن است در هر رژیم آب و هوایی اتفاق بیفتد. از آنجا که وقوع خشکسالی اجتناب ناپذیر است، بنابراین شناخت آن به‌منظور مدیریت بهینه منابع آب، از اهمیت بسزایی برخوردار است. از مؤثرترین عوامل در تدوین طرحهای مقابله با خشکسالی و مدیریت آن، طراحی سیستم‌های پیش‌بینی خشکسالی است که بتوان اثرات مخرب ناشی از آن را به حداقل رساند. به این منظور در این تحقیق برای پیش‌بینی خشکسالی‌های آتی، از تلفیق الگوریتم ژنتیک و مدل ترکیبی شبکه عصبی-موجکی در تحلیل شاخص بارندگی استاندارد شده، استفاده گردید و در نهایت نشان داده شد که به‌کارگیری روش تلفیقی مذکور در مقایسه با تلفیق الگوریتم ژنتیک و شبکه عصبی، نتایج مطلوبی را ارائه می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Drought Forecasting Using Genetic Algorithm and Conjoined Model of Neural Network-Wavelet

نویسندگان [English]

  • Yousef Hassanzadeh 1
  • Amin Abdi Kordani 2
  • Ahmad Fakheri Fard 3
1 Prof. of Civil Eng., Dept. of Water Eng., University of Tabriz, Tabriz
2 Ph.D. Student of Civil Eng., Dept. of Water Eng., University of Tabriz, Tabriz
3 Assoc. Prof. of Water Eng., College of Agriculture, University of Tabriz, Tabriz
چکیده [English]

Drought is one of the important natural disasters that may happen in any climate conditions. Since drought is inevitable phenomenon, therefore familiar with that natural disaster is very important for reliable water management. Drought prediction system design is one of the efficient ways that it can minimize the drought damages. In this research for predicting the coming drought, genetic algorithm and conjoined model of neural network-wavelet is used for analyzing standardized precipitation index. The results show that genetic algorithm and conjoined model of neural network-wavelet is more satisfactory than genetic algorithm and neural network.

کلیدواژه‌ها [English]

  • Drought forecasting
  • Standardized precipitation index
  • Genetic algorithm
  • Neural Network
  • Wavelet
1- Loukas, A., Vasiliades, L., and Tzabiras, J. (2007). “Evaluation of climate change on drought impulses in Thessaly, Greece.” European Water, 17/18, 17-28.
2- Yurekli, K., and Kurunc, A. (2004). “Simulation of drought periods using stochastic models.” Turkish J. of Engineering and Environmental Science, 28, 181-190.
3- Wilhite, D.A. (2000). “Drought as a natural hazard: Concepts and definitions.” Wilhite, D.A. (ed.). Drought: A global assessment, Vol. 1, Routledge, New York, 1-18.
4- Hayes, M.J., Svoboda, M.D., Wilhite, D.A., and Vanyarkho, O.V. (1999). “Monitoring the 1996 drought using the standardized precipitation index.” Bulletin of American Meteorological Society, 80(3), 429-438.
5- Karahan, H., Ceylan, H., and Ayvaz, M.T. (2007). “Predicting rainfall intensity using a genetic algorithm approach.” Hydrological Processes, 21, 470-475.
6- Chen, C.S., Liu, C.H., and Su, H.C. (2008). “A nonlinear time series analysis using two-stage genetic algorithms for streamflow forecasting.” Hydrological Processes, 22, 3697-3711.
7- Mohan, S., and Vijayalakshmi, D.P. (2008). “Estimation of Nash’s IUH parameters using stochastic search algorithms.” Hydrological Processes, 22, 3507-3522.
8- Hassanzadeh, Y., Abdi, A., Talatahari, S., and Singh, V.P. (2011). “Meta-heuristic algorithms for hydrologic frequency analysis.” Water Resources Management, 25, 1855-1879.
9- Raziei, T., Daneshkar Arasteh, P., Akhtari, R., and Saghafian, B. (2007). “Investigation of metrological drought in the Sistan and Balochestan province.” Using the Standardized Precipitation Index and Markov Chain Model, 3(1), 25-35.
10- Kim, T.W., and Valdes, J.B. (2003). “Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks.” J. of Hydrologic Engineering, 8(6), 319-328.
11- Wang, W., and Ding, J. (2003). “Wavelet network model and its application to the prediction of hydrology.” Nature and Science, 1(1), 67-71.
12- Abrishamchi, A., Mehdikhani, H., Tajrishy, M., and Marino, M.A. (2007). “Application of conjunctive nonlinear model based on wavelet transforms and artificial neural networks to drought forecasting.” American Geophysical Union, Fall Meeting, Abstract Number: PA33A-1021.
13- Rahnama, M.B., and Nouri, M. (2008). “Developing of Halil river rainfall-runoff model, using conjuction of wavelet transform and artificial neural network.” Research J. of Environmental Science, 2(5), 385-392.
14- Nourani, V., Alami, M.T., and Aminfar, M.H. (2009). “A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation.” Engineering Applications of Artificial Intelligence, 22, 466-472.
15- Kisi, O. (2009). “Neural networks and wavelet conjunction model for intermittent streamflow forecasting.” J. of Hydrologic Engineering, 14(8), 773-782.
16- Partal, T., and Cigizoglu, H.K. (2009). “Prediction of daily precipitation using wavelet–neural networks.” J. of Hydrological Sciences, 54(2), 234-246.
17- McKee, T.B., Doesken, N.J., and Kleist, J. (1993). “The relationship of drought frequency and duration to time scales.” 8th Conference on Applied Climatology, Anaheim, CA, 179-184.
18- Guttman, N.B. (1999). “Comparing the drought index and the standardized precipitation index.” J. of American Water Resources Association, 35(2), 311-322.
19- Mishra, A.K., and Desai, V.R. (2005). “Drought forecasting using stochastic models.” J. of Stochastic Environmental Research and Risk Assessment, 19, 326-339.
20- Mishra, A.K., Singh, V.P., and Desai, V.R. (2009). “Drought characterization: A probabilistic approach.” Stochastic Environmental Research and Risk Assessment, 23, 41-55.
21- Sivanandam, S.N., and Deepa, S.N. (2008). Introduction to Genetic Algorithm, Springer-Verlag, Berlin.
22- Nori, R., Farokhnia, A., Morid, S., and Riahi Madvar, H. (2009). “Effect of input variables preprocessing in artificial neural network on monthly flow prediction by PCA and wavelet transformation.” J. of Water and Wastewater, 1, 13-22. (In Persian)
23- Aussem, A., Campbell, J., and Murtagh, F. (1998). “Wavelet-based feature extractionand decomposition strategies for financial forecasting.” J. of Computational Intelligencein Finance, 6(2), 5-12.