تعیین ویژگی‌های فیزیکی شبکه معادل در تحلیل جریان درون محیط‌های متخلخل با استفاده از مدل‌های شبکه‌ای

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، بخش راه وساختمان، دانشکده مهندسی، دانشگاه شیراز

2 دانشیار، بخش راه و ساختمان، دانشکده مهندسی، دانشگاه شیراز

3 استادیار، بخش راه و ساختمان، دانشکده مهندسی، دانشگاه شیراز

چکیده

تحلیل جریان درون محیط‌های متخلخل، کاربردهای متعددی در شاخه‌های مختلف علوم و مهندسی از جمله مهندسی منابع آب، محیط‌زیست، شیمی و نفت دارد. بیشتر تحقیقاتی که در این زمینه صورت پذیرفته، بر اساس مبانی تئوریک و نتایج حاصل از مشاهدات آزمایشگاهی دارسی و فورشهایمر است. در دهه اخیر، به دلیل نیاز به بررسی جریان‌های دو و یا سه بعدی و همچنین تحلیل برخی از پیچیدگی‌های جریان درون محیط‌های متخلخل، مدل‌های شبکه‌ای نظر بسیاری از پژوهشگران را به خود جلب کرده است. در این مدل‌ها، خلل و فرج موجود در محیط متخلخل، به صورت شبکه‌ای از حفره‌ها و مجاری به هم پیوسته در نظر گرفته شده و سپس با یک شبکه لوله‌ای، شبیه‌سازی می‌گردد. از آنجا که در این روش، لوله‌ها مبین مجاری و گرهها نقش حفره‌های موجود در محیط مزبور را ایفا می‌کنند، لذا تعیین ویژگی‌های فیزیکی شبکه، از جمله ابعاد آن و همچنین قطر و طول لوله‌ها متناسب با خصوصیات محیط متخلخل از اهمیت فراوانی برخوردار است. در این تحقیق، روش خاصی برای تعیین این ویژگی‌ها ارائه گردیده و با پایش گذر حجمی و پروفیل سطح آب در دو مدل آزمایشگاهی که در محل آزمایشگاه هیدرولیک دانشکده مهندسی دانشگاه شیراز ساخته شده، صحت و میزان دقت این روش مورد ارزیابی قرار گرفته است. مقایسه مشاهدات آزمایشگاهی و نتایج حاصل از مدل پیشنهادی دلالت بر این امر دارد که 96 درصد از تغییرات موجود در گذر حجمی مشاهده شده، توسط مدل قابل توصیف است. علاوه بر این مقایسه پروفیل سطح آب مشاهده شده و محاسبه شده، نشان دهنده توصیف بیش از 98 درصد از تغییرات حادث در پروفیل مشاهده‌ای است، که این امر نیز دلالت بر مطابقت نسبتاً مطلوب نتایج حاصل از مشاهدات آزمایشگاهی با مقادیر محاسبه شده بر مبنای مدل پیشنهادی دارد و نشان دهنده دقت مناسب مدل ارائه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Identification of Network Physical Properties in Simulation of Flow Through Porous Media Using Network Model

نویسندگان [English]

  • Seyed Hosein Afzali 1
  • Mohammad Javad Abedini 2
  • Parviz Monajemi 3
1 Ph.D. Student, Dept. of Civil Engineering, School of Eng., Shiraz University
2 Assoc. Prof., Dept., of Civil Engineering, School of Eng., Shiraz University
3 Assist. Prof., Dept. of Civil Engineering, School of Eng., Shiraz University
چکیده [English]

 Simulation of flow phenomena in porous media occur in many areas of sciences and engineering. It has wide applications in a variety of disciplines including water resources engineering, environmental and chemical engineering, petroleum engineering, and groundwater hydrology. Both theoretical and experimental studies conducted to further our understanding of flow and transport phenomena in porous media are based on Darcy and Forchheimer constitutive equations. In recent years, a few investigators considered converting original porous media into a 2-D and/or 3-D networks to address challenging and complex issues in porous media. Such a network can be conceptualized as consisting of a series of pore bodies and throats. Pore body comprises the void between grains and throat represents the channel connecting two pore bodies. The basic question is how to choose throat’s length and size. In this study, two porous media of uniform size (i.e., spherical balls) but different diameters were constructed in the hydraulic laboratory of school of engineering, Shiraz University. A methodology is developed to convert each porous media into an equivalent network and the resulting network is subjected to rigorous computer simulation. Validity of such conversion is achieved via triggering and monitoring the two actual porous media in the laboratory. For this purpose, the equivalent network of first porous media is calibrated Preprint submitted to Journal of Water and Wastewater Engineering 5 May 2008 for pipe roughness using three different resistance equations. As both porous media have the same surface roughness characteristics, the equivalent network of second porous media is solved in a forward manner with different upstream heads using roughness coefficient obtained from the first porous media. Observed and simulated water surface profiles and outflow discharges from the second porous media are compared and contrasted to each other. Results show a good agreement between predicted values of the network model and experimental data obtained in the laboratory. 

کلیدواژه‌ها [English]

  • Porous media
  • Network model
  • Network Physical Properties
  • Pipe Network
1- Herrera, N. M., and Felton, G. K. (1991). “Hydraulics of flow through a rockfill dam using sediment-free water, Trans.” ASAE, 34(3), 871-875.

2- Li, B., Garga, V. K., and Davies,  M. H. (1998). “Relationship for non-Darcy flow in rockfill.” J. Hydraul. Eng., ASCE, 124(2), 206-212.

3- Sidiropoulou, M. G., Moutsopoulos, K. N., and Tsihrintzis, V. A. (2007). “Determination of Forchheimer equation coefficients.” Hydrol. Process., 21, 534-554.

4- Thauvin, F., and Mohanty, K. K. (1998). “Network modeling of non-Darcy flow through  porous media.” Transport Porous Med., 31 (1), 19-37. 

5- Wang, X., Thauvin, F., and Mohanty, K. K. (1999). “Non-Darcy flow through anisotropic porous media. ” Chem. Eng. Sci.,54 (12), 1859-1869.

6- Al-Raoush, R., Thompson, K., and Wilson, C. S. (2003). “Comparison of network generation techniques for unconsolidated porous media.” J. Soil Sci. Soc. Am., 67(1), 1678-1700.

7- Acharya, R. C., Zee, S. E. A. T. M., and Leijnse, A. (2004). “Porosity-permeability properties generated with a new 2-parameter 3D hydraulic pore-network model for consolidated and unconsolidated porous  media.” Adv. Water Resour., 27, 707-723.

8- Fischer, U., and Celia, M. A. (1999). “Prediction of relative and absolute permeabilities for gas and water from soil water retention curves using a pore-scale network model.” Water Resour. Res., 35(4), 1089-1100.

9- Held, R. J., and Celia, M. A. (2001a). “Modeling support of functional relationships between capillary pressure, saturation, interfacial area and common lines.” Adv. Water Resour., 24 (3,4), 325-343.

10- Held, R. J., and Celia, M. A. (2001b). “Pore-scale modeling extension of constitutive relationships in the range of residual saturations.” Water Resour. Res., 37(1), 165-170.

11- Haring, R. E., and Greenkorn, R. A. (1970). “A statistical model of a porous medium with nonuniform pores.” J. AICHE., 16(3), 477- 483.

12- Lupton, R. (1993). Statistics in theory and practice, 22ed Ed., Princeton University Press,Princeton, N. J.

13- افضلی، س. ح.، عابدینی، م. ج.، و منجمی، پ. (1387). شبیه سازی جریان آب در محیط متخلخل با بهره‌گیری از شبکه ترکیبی تحت فشار-سطح آزاد متشکل از مجاری به هم پیوسته. م. تحقیقات منابع آب ایران، در دست چاپ.

14- Martins, A. A., Laranjeira, P. E., Lopes, J. C. B., and Dias, M. M. (2007). “Network modeling flow in a packed bed.” J. AICHE, 53 (1), 91-107.

15- Taylor, D. W. (1948). Fundamental of soil mechanics, John Wiley and Sons Inc.,New York.

16- Beven, K. J. (1993). “Prophecy, reality and uncertainty in distributed hydrological modeling.” Adv. Water Resour., 16 (1), 41-51.

17- Beven, K. J. (2000). “Uniqueness of place and process representations in hydrological modeling.” Hydrol. Earth Syst. Sci., 4(2), 203-213.