اثر تثبیت ریزجلبک کلامیدوموناس برای حذف ارتوفسفات از پساب شهری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی آب، دانشگاه شیراز

2 استادیار بخش مهندسی آب، دانشگاه شیراز

3 استاد بخش مهندسی آب، دانشگاه شیراز

4 استادیار پژوهشکدة بیوتکنولوژی، دانشگاه شیراز

5 دانشیار گروه بیوتکنولوژی دارویی، دانشکدة داروسازی، دانشگاه علوم پزشکی شیراز

چکیده

هدف از این پژوهش بررسی اثر کاربرد و نحوه عملکرد ریزجلبک کلامیدوموناس در حذف ارتوفسفات از پساب شهری بود. در این پژوهش سه تیمار به‌صورت ریزجلبک تثبیت شده در آلژینات، ریزجلبک آزاد و بدون ریزجلبک (تیمار شاهد) با مقادیر مختلف هوادهی (صفر، 1 و 2/5 لیتر در دقیقه) با سه تکرار درنظر گرفته شد و به 1/5 لیتر از پساب خروجی مرحله دوم تصفیه‌خانه فاضلاب شیراز اضافه شد. در یک دوره 14 روزه، عملکرد ریزجلبک در حذف ارتوفسفات از پساب شهری مورد بررسی قرار گرفت. بر اساس نتایج حاصل، بالاترین نرخ کاهش ارتوفسفات (10/33 درصد در روز) مربوط به تیمار ریزجلبک تثبیت شده با هوادهی 2/5 لیتر بر دقیقه بود که این نرخ با کاهش میزان هوادهی کاهش یافت. البته تیمار با ریزجلبک آزاد با هوادهی 1 لیتر بر دقیقه نیز نتایج خوبی داشت. تثبیت و افزایش میزان هوادهی بر تعامل بین ریزجلبک و باکتری، تأثیر گذاشته و باعث حذف مقادیر بیشتر ارتوفسفات شد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Immobilization of Microalgae Chlamydomonas for Orthophosphate Removal from Municipal Wastewater

نویسندگان [English]

  • Narges Zamani 1
  • Masoud Noshadi 2
  • Seifollah Amin 3
  • Ali Niyazi 4
  • Younes Ghasemi 5
1 M.Sc. of Water Eng., Shiraz University, Shiraz
2 Assist. Prof. of Water Eng., Shiraz University, Shiraz
3 Prof. of Water Eng., Shiraz University, Shiraz
4 Assis. Prof., Biotechnology Research Center, Shiraz University, Shiraz
5 Assoc. Prof. of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz
چکیده [English]

The aim of this research is to study the performance of microalgae Chlamydomonas in orthophosphate removal from municipal wastewater. In this research three treatments in three replications were applied. The treatments were free and immobilized cells of Chlamydomonas in alginate and blank (without microalgae). Three treatments were added into bioreactors with different rate of aeration (0, 1 and 2.5 Lmin-1), containing 1.5 litre of secondary effluent of Shiraz wastewater treatment plant. Orthophosphate removal from wastewater was examined for 14 days. The highest orthophosphate removal rate (10.33 percent per day) belonged to the immobilized microalgae treatment with 2.5 Lmin-1 aeration rate. Furthermore, for the immobilized microalgae treatments, removal efficiency decreased as a result of decrease in aeration rate. The results of free Chlamydomonas with 1 Lmin-1 aeration rate in orthophosohate removal were remarkable. Immobilization of microalgae with increasing aeration rate would improve algal- bacterial process and also would increase efficiency of orthophosphate removal.

کلیدواژه‌ها [English]

  • Municipal Wastewater Treatment
  • Orthophosphate
  • Microalgae
  • Chlamydomonas
  • Aeration
  • Alginate beads
1- de- Bashan, L. E., and Bashan, Y. (2010). “Immobilized microalgae for removing pollutants: Review of practical aspects. ” Bioresource Tech., 101, 1611-1627.
2- Lau, P. S., Tam, N. F. Y., and Wong, Y. S. (1997). “Wastewater nutrients (N and P) removal by carrageenan and alginate immobilized chlorella vulgaris.” Env. Technol., 18, 945-951.
3- Trepanier, C., Parent, S., Comeau, Y., and Bouvrette, J. (2002). “Phosphorus budget as a water quality management tool for closed aquatic mesocosms. ” Water Res., 36,1007-1017.
4- Martinenz, M. E., Sanchez, S., Jimenez, J. M., El Yousfi, F., and Munoz, L. (2000). “Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus.” Bioresource Tech., 73, 263-272.
5- Grobbelaar, J. U., Soeder, C. J., Groeneweg, E. S., and Hartig, P. (1988). “Rates of biogenic oxygen production in mass-cultures of microalgae, absorption of atmospheric oxygen and oxygen availability for wastewater treatment.” Water Res., 22, 1459-1464.
6- Munoz, R., Kollner, C., and Guieysse, B. (2004). “Photosynthetically oxygenated salicylate biodegradation in a continuous stirred tank photobioreactor.” Biotechnol. Bioeng., 87 (6), 797-803.
7- Oswald, W. J. (1988). “Micro-algae and wastewater treatment.” Borowitzka, M.B.L. (Eds.). Micro-algal Biotechnology,CambridgeUniversity Press,Cambridge.
8- de-Bashan, L. E., Trejo, A., and Huss, V. A. R. (2008). “Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater.” Bioresource Tech., 99, 4980-4989.
9- Fierro, S., Sanchez-Saavedra, M. D. P., and Copalcua, C. (2007). “Nitrate and phosphate removal by chitosan immobilized Scenedesmus.” Bioresource Tech., 99 (5), 1274-1279.
10- Shi, J., Podola, B., and Melkonian, M. (2006). “Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers.” J. Appl. Phycol., 19 (5), 417-423.
11- Chojnacka, K., Chojnacki, A., and Gorecka, H. (2005). “Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: Kinetics, equilibrium and the mechanism of the process.” Chemosphere, 59, 75-84.
12- Yu, R-Q., and Wang, W-X. (2004). “Biokinetics of cadmium, selenium, and zinc in freshwater alga Scenedesmus obliquus under different phosphorus and nitrogen conditions and metal transfer to Daphnia magna.” Environ. Pollut., 129, 443-456.
13- Semple, K. T., Cain, R. B., and Schmidt, S. (1999). “Biodegradation of aromatic compounds by microalgae.” FEMS Microbiol. Lett., 170, 291-300.
14- Ghasemi, Y., Moradian, A., Mohagheghzadeh, A., Shokravi, S., and Morowvat, M. H. (2007). “Antibacterial activity of the microalgea collected from paddy fields of Iran: Characterization of antimicrobial activity of chroococcus disperses.” J. of Biological Science, 7 (6), 904-910.
15- Robinson, P. K. (1998). “Immobilized algal technology for wastewater treatment purposes.” Wastewater Treatment with Algae, Springer-Verlag andLandes Bioscience,New York, 1-16.
16- Schumacher, G., Blume, T., and Sekoulov, I.(2003). “Bacteria reduction and nutrient removal in small wastewater treatment plants by an algal biofilm.” Water Sci. Technol., 47, 195-202.
17- Nunez, V. J., Voltolina, D., Nieves, M., Pina, P., Medina, A., and Guerrero, M. (2001). “Nitrogen budget in Scenedesmus obliquus cultures with artificial wastewater.” Bioresource Tech., 78, 161-164.
18- Rasoul-Amini, S., Ghasemi,Y., Morowvat, M. H., and Mohagheghzadeh, A. (2009). “PCR amplification of 18S rRNA, single cell protein production and fatty acid evaluation of some naturally isolated microalgae.” Food Chemistry, 116, 129-136.
19- Liang, S., Liu, X., Chen, F., and Chen, Z. (2004). “Current microalgal health food R & D activities in China.” Hydrobiologia, 512, 45-48.
20- Munoz, R., Jacinto, M. S. A., Guieysse, B., and Mattiasson, B. (2005). “Combined carbon and nitrogen removal from acetonitrile using algal–bacterial reactors.” Appl. Microbiol. Biotechnol., 67 (5), 699-707.
21- Sawayama, S., Minowa, T., and Yokoyama, S. Y. (1999). “Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae.” Biomass Bioenergy, 17 (1), 33-39.
22- Mallick, N. and Rai, L. C. (1994). “Removal of inorganic ions from wastewater by immobilized microalgae.” World J. Microbiol Biotechnol., 10, 439-443.
23- Tam, N. F. Y., and Wong, Y. S. (2000). “Effect of immobilized microalgae bead concentrations on wastewater nutrient removal.” Envir. Pollution, 107 (1), 145-151.
24- Travieso, L., Benitez, F., Weiland, P., Sanchez, E., Dupeyron, R., and Dominguez, A. R. (1996). “Effect of immobilization on microalgae for nutrient removal in wastewater treatments.” Bioresource Technol., 55,
181-186.
25- Mostajeran, A., Yahyabady, S., and Emtiaz, G. (2006). “Reduction of high organic loading of industrial wastewater using green alge (Spirogyra SP) and blue-green algo (Oscillatoria SP. and anobaena S.P).” J. of Water and Wastewater, 57, 37-46. (In Persian)
26- Bina, B. (2005). “Efficiency of small scale hydroponics wastewater treatment.” J. of Water and Wastewater, 52, 89-46. (In Persian)
27- Mallick, N. (2002).  “Biotechnological potential of immobilized algae for wastewater N, P and metal removal: A review.” Biometals, 15, 377-390.
28- Moreira, S. M., Moriera-Santos, M., Guilhermino, L., and Ribeiro, R. (2006).  “Immobilization of the marine microalga Phaeodactylum tricornutum in alginate for in situ experiments: Bead stability and suitability.” Enzyme and Microbial Tech., 38, 135-141.
29- Moreno-Garrido, I. (2008). “Microalgae immobilization: Current techniques and uses.” Bioresource Tech., 99 (10), 3949-3964.
30- Cybercolloieds, ״Alginate.״ (2007). < http:// www.cybercolloids.net/ library/ alginate/ structure.php> (Apr. 6, 2009).
31- Zamani, N., Noushadi, M., Amin, S., Ghasemi, Y., and Niazi, A. (2009). “Nitrate-nitrogen and orghophosphate removal from wastewater using biotechnology-microalgae.” 2nd International Symposium on Environmental Engineering, <http://www.civilca.com/paper-ISOEE02_014 html> (May, 15 2012).
(In Persian)
32- Lee Joeng, M., Gillis, J. M., and Hwang, J. Y. (2003). “Carbon dioxide mitigation by microalgae photosynthesis.” Bull. Korean Chem. Soc., 24, 1763- 1766.
33- APHA. (2005). Standard methods for the examination of water and wastewater, 18th Ed., American Public Health Association,Washington,DC.
34- Emrahimi, S., and Keynejad, M.A. (2004). Environmental engineering (Water and wastewater treatment), 2nd Ed., Sahand University of Technology,Tabriz. (In Persian)
35- Alizadeh, A. (2005). Water, soil and crop relationships, FerdowsiUniversity,Mashhad. (In Persian)
36- Thakur, A., and Kumar, H. D. (1999). “Use of natural polymers as immobilizing agents and effects on the growth of dunaliella salina and its glycerol production.” Acta Biotechnologica, 19, 37- 44.