مطالعه تجربی ترکیبات آلی فرار منتشره از حوضچه‌های تصفیه پساب پالایشگاه‌های نفتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، گروه مهندسی شیمی، دانشکده مهندسی شیمی و نفت، دانشگاه تبریز، تبریز، ایران

2 استادیار، گروه مهندسی شیمی، دانشکده مهندسی شیمی و نفت، دانشگاه تبریز، تبریز، ایران

چکیده

واحد تصفیه پساب پالایشگاه‌های نفت یکی از منابع مهم در انتشار ترکیبات آلی فرار بوده و قرار گرفتن در معرض این آلاینده‌ها خطرات قابل‌توجهی بر کارکنان پالایشگاه و ساکنین مجاور دارد. هدف از این پژوهش، بررسی میزان ترکیبات آلی فرار و غلظت آنها در پساب‌های پالایشگاهی و همچنین تخمین میزان انتشار به هوا بود. غلظت و بار آلودگی ترکیبات آلی فرار در پساب تولیدی واحدهای عملیاتی و حوضچه‌های تصفیه پساب توسط دستگاه کروماتوگرافی گاز و تخمین انتشار ترکیبات آلی فرار با استفاده از روش‌های Rank 2 و Rank 3 سازمان حفاظت از محیط‌زیست آمریکا انجام شد. میزان آلودگی پنج ترکیب هگزان، بنزن، تولوئن، اتیل بنزن و زایلن رسیده به واحد بازیافت 1095 تن در سال و برای پنج ترکیب یاد شده به‌همراه پنتان، هپتان، متیل‌ سیکلو هگزان، 1و2و4 تری‌متیل بنزن، 1و3و5 تری‌متیل بنزن و دودکان، 5379 تن در سال محاسبه شد. بر همین اساس به‌ازای هر تن نفت خام فراورش شده، 187 گرم از مجموع پنج ترکیب و 692 گرم از یازده ترکیب، از واحدهای فرایندی تولید ‌شد. 78 درصد بار آلودگی یازده ترکیب و 60 درصد بار آلودگی پنج ترکیب به واحد بازیافت می‌رسد که نشان‌دهنده انتشار آلاینده‌ها در مسیر انتقال به واحد بازیافت بود. همچنین به‌ازای هر تن نفت خام فراورش شده، 5/48 گرم پنج ترکیب و 6/241 گرم یازده ترکیب منتخب از حوضچه‌های تصفیه پساب منتشر شد. شناسایی منابع تولید ترکیبات آلی فرار یکی از راه‌های کاهش ورود بار آلودگی به واحد تصفیه پساب و در نتیجه کاهش میزان انتشار ترکیبات آلی فرار از پالایشگاه است. بر این اساس پالایشگاه‌ها می‌توانند استراتژی مناسب خود را برای کاهش انتشار به‌کار گیرند. این پژوهش برای پالایشگاهی با ظرفیت 10 مگاتن در سال و با درجه پیچیدگی متوسط انجام شد که قابلیت استفاده توسط هر پالایشگاه متناظری در دنیا را دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental Study of Emitted Volatile Organic Pollutants from Wastewater Treatment Ponds in Oil Refineries

نویسندگان [English]

  • Shabnam Ziaei Seginsara 1
  • Leila Khazini 2
1 Former Graduate Student, Dept. of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
2 Assist. Prof., Dept. of Chemical Engineering, Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
چکیده [English]

Wastewater treatment unit in an oil refinery is one of the main emission sources of volatile organic compounds and exposure to these pollutants has major negative impacts on refinery staff and residents of adjacent areas. The purpose of this study is to investigate the concentration of volatile organic compounds in refinery effluents and to estimate the emission of these compounds into the air. Concentration and pollution load of volatile organic compounds in operating units and basins of treatment unit wastewater were analyzed using gas chromatography and emission estimation of them was done using the Rank 2 and Rank 3 of the US Environmental Protection Agency. The pollution received by wastewater plant was 1095 ton/y of five components: benzene, toluene, xylene, ethyl benzene and hexane, while 5379 ton/y for the eleven pollutants including previous five components plus pentane, heptane, methyl cyclohexane, 1-2-4 tri-methylbenzene, 1-3-5 tri-methylbenzene and dodecane. Based on refinery feed, for each ton of crude oil processed, 187 g of the total 5 compounds and 692 g of 11 compounds are produced from operational units; but only 78% of the 11 compounds and 60% of the 5 compounds could reach the treatment unit, which indicates the emission of pollutants in the transfer path. Overall, for each ton of processed crude oil, 48.5 g of 5 compounds and 241.6 g of 11 compounds from effluent treatment ponds are emitted to the atmosphere. Identifying the sources of volatile organic compounds production is one of the ways to reduce the pollution load entering the treatment unit and thus reduces the emission from the refinery. Based on these results, refineries could apply proper strategies for emission decrease. This research has been done for a refinery with ten megatons capacity per year and medium complexity, which could be used by any analogous refinery in the world.

کلیدواژه‌ها [English]

  • Air Pollution
  • Volatile Organic Compounds
  • Oil Refinery
  • Wastewater Treatment Pond
  • Emission
Bai, N., Khazaei, M., Van Eeden, S. & Laher, I. 2007. Pharmacology of particulate matter air pollution-induced cardiovascular dysfunction. Pharmacology and Therapeutics, 113(1), 16-29.
Besis, A., Latsios, I., Papakosta, E., Simeonidis, T., Kouras, A., Voliotis, A., et al. 2020. Spatiotemporal variation of odor-active VOCs in Thessaloniki, Greece: implications for impacts from industrial activities. Environmental Science and Pollution Research, 28(42), 59091-590104.
Cetin, E., Odabasi, M. & Seyfioglu, R. 2003. Ambient volatile organic compound (VOCs) concentrations around a petrochemical complex and a petroleum refinery. Science of the Total Environment, 312(1-3), 103-112.
Chen, L., Jin, T., Huang, B., Chang, X., Lei, L., Nordberg, G. F., et al. 2006. Plasma metallothionein antibody and cadmium-induced renal dysfunction in an occupational population in China. Toxicological Sciences, 91(1), 104-112.
Ciccioli, P., Massimiliano, F. & Cecinato, A. 2001. Determination of volatile organic compounds (voc) emitted from biomass burning of mediterranean vegetation species by GC-MS. Analytical Letters, 34(6), 937–955.
Daqil, V., Sihua, L., Shuyu, H., Kai, S., Min, S., Shaodong, X., et al. 2021. Research on accounting and detection of volatile organic compounds from a typical petroleum refinery in Hebei, North China. Chemosphere, 281, 130653.
EPA. 2008. Air Emissions Inventory for the Greater Metropolitan Region in New South Wales. Technical report No. 5. Washington, USA.
EPA. 2015. Emissions Estimation Protocol for Petroleum Refineries. Office of air quality planning and standards U.S. EPA, Research Triangle Park, NC 27711. Washington, USA.
Feng, Y., Xiao, A., Jia, R., Zhu, S., Gao, S., Li, B., et al. 2020. Emission characteristics and associated assessment of volatile organic compounds from process units in a refinery. Environmental Pollution, 265, 115026.
Frisch, L. 2003. Fugitive VOC-Emissions Measured at Oil Refineries. County Administration of Västra Götaland. Göteborgs Länstryckeri, Sweden.
Hadavi, P., Arhami, M., Parchamdar, A., Ashrafi, K., Moosavi, A., Saffarian, F., et al. 2017. Estimating fugitive emission of volatile organic compounds from evaporation ponds. EPA International Emissions Inventory Conference. Sharif University of Technology, Tehran, Iran.
Han, D. M., Gao, S., Fu, Q. Y., Cheng, J. P., Chen, X. J., Xu, H., et al. 2018. Do volatile organic compounds (VOCs) emitted from petrochemical industries affect regional PM2.5?. Atmospheric Research, 209, 123-130.
He, X., Che, X., Gao, S., Chen, X., Pan, M., Jiang, M., et al. 2022. Volatile organic compounds emission inventory of organic chemical raw material industry. Atmospheric Pollution Research, 101276, 13.
Li, Y., Wu, B., He, C., Nie, F. & Shi, Q. 2022. Comprehensive chemical characterization of dissolved organic matter in typical point-source refinery wastewaters. Chemosphere, 286, 131617.
Liu, Y., Han, F., Liu, W., Cui, X., Luan, X. & Cui, Z. 2020. Process-based volatile organic compound emission inventory establishment method for the petroleum refining industry. Journal of Cleaner Production, 263, 121609.
Roveda, L., Polvara, E., Invernizzi, M., Capelli, L., & Sironi, S. 2020. Definition of an emission factor for VOC emitted from Italian and European refineries. Atmosphere, 11(6), 564.
Lyman, S. N., Mansfield, M. L., Tran, H. N. Q., Evans, J. D., Jones, C., O'neil, T., et al. 2018. Emissions of organic compounds from produced water ponds I: characteristics and speciation. Science of the Total Environment, 619-620, 896-905.
Masih, A., Lall, A. S., Taneja, A. & Singhvi, R. 2018. Exposure levels and health risk assessment of ambient BTX at urban and rural environments of a terai region of northern India. Environmental Pollution, 242, 1678-1683.
Mukerjee, S., Smith, L. A., Thoma, E. D., Whitaker, D. A., Oliver, K. D., Duvall, R., et al. 2020. Spatial analysis of volatile organic compounds using passive samplers in the Rubbertown industrial area of Louisville, Kentucky, USA. Atmospheric Pollution, Research, 11(6), 81-86.
Na, K., Kim, Y. P., Moon, K. C., Moon, I. & Fung, K. 2001. Concentrations of volatile organic compounds in an industrial area of Korea. Atmospheric Environment, 35, 2747-2756.
Nejad Bahadori, F. & Ahmadinia, P. 2017. Guide to monitoring air and waste pollutants. Health, Safety and Environment Management, NIOC-HSE-EN-GU-032-00. (In Persian)
Pakravan , S., Saeb, K. & Geysari, M. M. 2014. Investigation of types of oil pollutants due to the operation of Isfahan oil and petrochemical refinery in groundwater resources. 7th National Conference and Specialized Exhibition of Environmental Engineering. Isfahan, Iran. (In Persian)
Pandya, G. H., Gavane, A. G., Bhanarkar, A. D. & Kondawar, V. K. 2006. Concentrations of volatile organic compounds (VOCs) at an oil refinery. International Journal of Environmental Studies, 63, 337-351.
Ragothaman, A. & Anderson, W. 2017. Air quality impacts of petroleum refining and petrochemical industries. Environments, 4(3), 66.
Rajabi, H., Hadi Mosleh, M., Mandal, P., Lea-Langton, A. & Sedighi, M. 2020. Emissions of volatile organic compounds from crude oil processing - global emission inventory and environmental release. Science of the Total Environment, 727, 138654.
Wei, W., Lv, Z., Yang, G., Cheng, S., Li, Y. & Wang, L. 2016. VOCs emission rate estimate for complicated industrial area source using an inverse-dispersion calculation method: a case study on a petroleum refinery in Northern China. Environmental Pollution, 218, 681-688.
Yuan, T. H., Ke, D. Y., Wang, J. E. H. & Chan, C. C. 2020. Associations between renal functions and exposure of arsenic and polycyclic aromatic hydrocarbon in adults living near a petrochemical complex. Environmental Pollution, 256, 113457.
Zhang, Z., Wang, H., Chen, D., Li, Q., Thai, P., Gong, D., et al. 2017. Emission characteristics of volatile organic compounds and their secondary organic aerosol formation potentials from a petroleum refinery in Pearl River Delta, China. Science of the Total Environment, 584-585, 1162-1174.
Zheng, G. D., Liu, J. W., Shao, Z. Z. & Chen, T. B. 2020. Emission characteristics and health risk assessment of VOCs from a food waste anaerobic digestion plant: a case study of Suzhou, China. Environmental Pollution, 257, 113546.