تولید نقشه پتانسیل وقوع گرفتگی شبکه فاضلاب شهری با استفاده از شبکه عصبی و GIS (مطالعه موردی: منطقه 2 آبفای تهران)

نوع مقاله : مطالعه موردی

نویسندگان

1 دانشجوی دکترا، گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده جغرافیا، دانشگاه تهران، تهران، ایران

2 دانشیار، گروه سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده جغرافیا، دانشگاه تهران، تهران، ایران

چکیده

شبکه فاضلاب به‌عنوان یکی از مهم‌ترین تأسیسات زیربنایی، می‌تواند نقش مهمی را در دستیابی به توسعه پایدار از طریق ارتقای سطح بهداشت عمومی و حفاظت از محیط‌زیست با جلوگیری از آلودگی منابع آبهای سطحی و زیرزمینی داشته باشد. یکی از شایع‌ترین حوادثی که به مقدار قابل‌توجهی در این شبکه اتفاق می‌افتد، گرفتگی در لوله‌های جمع‌آوری فاضلاب است. شناخت عوامل تأثیرگذار در وقوع گرفتگی در شبکه، تأثیر قابل‌توجهی در پیش‌بینی صحیح حوادثی که در آینده برای شبکه ممکن است اتفاق بیافتد، دارد. در این پژوهش، به‌منظور پیش‌بینی و تهیه نقشه پتانسیل وقوع گرفتگی در شبکه فاضلاب، از ابزارهای GIS و شبکه عصبی مصنوعی استفاده شد. فاکتورهای مهم در بروز گرفتگی شامل، کاربری، قطر سیفون، عمق سیفون، عمق و جنس و سن لوله در تحلیل شبکه عصبی استفاده شدند. از داده‌های ورودی به‌ترتیب 70، 15و 15 درصد برای آموزش، اعتبارسنجی و تست مدل استفاده شد. نتایج حاصل از شبیه‌سازی با استفاده از شبکه‌ عصبی با شاخص توافق 9/0R2= تناسب زیادی بین مکان‌های پیش‌بینی شده و مشاهده شده گرفتگی را نشان داد و همچنین در نقشه پتانسیل گرفتگی، محدوده‌هایی با تراکم جمعیت زیاد، بافت فرسوده و ساخت‌و‌سازهای غیرمجاز (به‌دلیل نصب انشعابات غیرمجاز) پتانسیل زیاد گرفتگی مشاهده شد.

کلیدواژه‌ها


عنوان مقاله [English]

Production of Potential Blockage Event Map for Urban Sewer Networks Using Neural Network and GIS (Case Study: Region 2 of ABFA of Tehran City)

نویسندگان [English]

  • Farimah Bakhshizadeh 1
  • Mohammadreza Jelokhani-Niaraki 2
  • Somaye Mahmoudi 1
1 PhD Student, Dept. of Remote Sensing and Geographic Information System, Faculty of Geography, University of Tehran, Tehran, Iran
2 Assoc. Prof., Dept. of Remote Sensing and Geographic Information System, Faculty of Geography, University of Tehran, Tehran, Iran
چکیده [English]

Wastewater network as one of the most important infrastructure facilities can play an important role in achieving sustainable development by improving public health and environmental protection by preventing pollution of surface and groundwater resources. One of the most common incidents that occurs significantly in this network is blockage of the sewer pipes. Recognizing the factors influencing the occurrence of network blockage has a significant impact on accurately predicting what may happen to the network in the future. In the present study, GIS tools and artificial neural network were used to predict and mapping the potential for blockage in the sewer network. Important factors in the occurrence of blockage including, land use, siphon diameter, siphon depth, depth, materials and age of the pipe were used in neural network analysis. From input data of 70%, 15% and 15%, respectively, were used for training, validation and model testing. The results of the simulation using a neural network with a Performance Indicator of R2=0.9 showed a high fitness between the predicted and observed locations of the blockage. Also, in the blockage potential map, areas with high population density, worn texture and unauthorized constructions (due to the installation of unauthorized branches) were observed blockage potential.

کلیدواژه‌ها [English]

  • Wastewater Network
  • GIS
  • Blockage Map
  • Region Two of the ABFA
  • Artificial Neural Network
Ahn, J., Lee, S., Lee, G. & Koo, J. 2005. Predicting water pipe breaks using neural network. Water Science and Technology: Water Supply, 5, 159-172.
Akhoondian, S. & Tabesh, M. 2011. Optimal performance-based design of wastewater collection systems. Journal of Civil and Surveying Engineering, 45(3),  267-278. (In Persian)
Anbari, M. J. & Tabesh, M. 2016. Failure event probability calculation in wastewater collection systems using the bayesian network. Journal of Water and Wastewater, 27(3), 48-61. (In Persian)
Anbari, M. J., Tabesh, M. & Roozbahani, A. 2017. Risk assessment model to prioritize sewer pipes inspection in wastewater collection networks. Journal of Environmental Management, 190, 91-101.
Arjun, K. & Aneesh, K. 2015. Modelling studies by application of artificial neural network using matlab. Journal of Engineering Science and Technology, 10, 1477-1486.
Asnaashari, A., Mcbean, E. A., Gharabaghi, B. & Tutt, D. 2013. Forecasting watermain failure using artificial neural network modelling. Canadian Water Resources Journal, 38, 24-33.
Baah, K., Dubey, B., Harvey, R. & Mcbean, E. 2015. A risk-based approach to sanitary sewer pipe asset management. Science of the Total Environment, 505, 1011-1017.
Baik, H. S., Jeong, H. S. & Abraham, D. M. 2006. Estimating transition probabilities in Markov chain-based deterioration models for management of wastewater systems. Journal of Water Resources Planning and Management, 132, 15-24.
Caudill, M. 1988. Neural networks primer, Part III. AI Expert, 3(6), 53-59.
Davies, J., Clarke, B., Whiter, J. & Cunningham, R. 2001. Factors influencing the structural deterioration and collapse of rigid sewer pipes. Urban Water, 3, 73-89.
Despagne, F. & Massart, D. L. 1998. Neural networks in multivariate calibration. Analyst, 123, 157R-178R.
Elmasry, M., Zayed, T. & Hawari, A. 2018. Defect-based ArcGIS tool for prioritizing inspection of sewer pipelines. Journal of Pipeline Systems Engineering and Practice, 9, 04018021.
Ghavami, S. M., Borzooei, Z. & Maleki, J. 2020. An effective approach for assessing risk of failure in urban sewer pipelines using a combination of GIS and AHP-DEA. Process Safety and Environmental Protection, 133, 275-285.
Greene, R., Agbenowosi, N. & Loganathan, G. 1999. GIS-based approach to sewer system design. Journal of Surveying Engineering, 125, 36-57.
Grigg, N. S. 2012. Water, Wastewater and Stormwater Infrastructure Management, (2nd Ed.) CRC Press. Florida, USA.
Hahn, M. A., Palmer, R. N., Merrill, M. S. & Lukas, A. B. 2002. Expert system for prioritizing the inspection of sewers: knowledge base formulation and evaluation. Journal of Water Resources Planning and Management, 128, 121-129.
Hahn, M., Palmer, R. N. & Merrill, M. S. 1999. Prioritizing sewer line inspection with an expert system. 29th Annual Water Resources Planning and Management Conference, Arizona, USA.
Hecht-Nielsen, R. 1992. Theory of the backpropagation neural network. Neural Networks for Perception. Computation, Learning and Architectures, 1992, 65-93.
Jafar, R., Shahrour, I. & Juran, I. 2010. Application of Artificial Neural Networks (ANN) to model the failure of urban water mains. Mathematical and Computer Modelling, 51, 1170-1180.
Khan, Z., Zayed, T. & Moselhi, O. 2009. Simulating impact of factors affecting sewer network operational condition. Canadian Society for Civil Engineering Annual Conference. Newfoundland, Canada.
Laakso, T., Kokkonen, T., Mellin, I. & Vahala, R. 2018. Sewer condition prediction and analysis of explanatory factors. Water, 10, 1239.
Mohammadi, E. P. & Noori, S. 2018. Spatial analysis of urban sewage network events using GIS. a case study of Ardabil city. Urban Planning, 34(9), 105-118.
Najjar, Y. M. & Basheer, I. A. 1996. A neural network approach for site characterization and uncertainty prediction. Uncertainty in the Geologic Environment: from Theory to Practice, Proceeding, Wisconsin, USA.
Norouzi, R. & Ghahroudi, T. M. 2018. Zoning sewage network vulnerability against natural hazards. Journal of Regional Planning, 34(9), 149-162. (In Persian)
Rahgozar, M. A., Zare, M. R. & Hashemi Fesharaki, S. M. 2016. An intelligent network proposed for assessing seismic vulnerability index of sewerage networks within a GIS framework (a case study of Shahr-e-Kord). Journal of Water and Wastewater, 26(6), 5-15. (In Persian)
Sullivan, R. H. 1977. Economic Analysis, Root Control and Backwater Flow Control as Related to Infiltration/Inflow Control. Municipal Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency, USA.
Tahzibi, K. M. N., Mashoof, B. & Nasibi, M. 2015. Evaluation of vulnerability in water conveyance systems using the clustering method. Crisis Management, 4(7), 97-104. (In Persian)
Ugarelli, R., Venkatesh, G., Brattebø, H., Di Federico, V. & Sægrov, S. 2010a. Asset management for urban wastewater pipeline networks. Journal of Infrastructure Systems, 16, 112-121.
Ugarelli, R., Venkatesh, G., Brattebø, H., Di Federico, V. & Sægrov, S. 2010b. Historical analysis of blockages in wastewater pipelines in Oslo and diagnosis of causative pipeline characteristics. Urban Water Journal, 7, 335-343.