الگوریتم مورچگان پیوسته در بهینه‌سازی بهره‌برداری از سیستم‌های چند مخزنی، مطالعه موردی: مخازن حوزه کرخه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار منابع آب، دانشکده مهندسی عمران، دانشگاه صنعتی خواجه نصیر‌الدین طوسی

2 دانشجوی کارشناسی ارشد مدیریت منابع آب ، دانشکده مهندسی عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران

چکیده

هدف از این تحقیق، مدل‌سازی بهره‌برداری از سیستم‌های پیچیده چندمخزنی به‌روش الگوریتم جامعه مورچگان ACOR و مقایسه آن با الگوریتم ژنتیک GA به‌عنوان یکی از قوی‌ترین الگوریتم‌های مطرح در این زمینه بود. در این راستا، از الگوریتم‌های GA و ACOR برای تعیین میزان بهره‌برداری بهینه درازمدت در یک سیستم سه مخزنی واقع در حوزه آبریز کرخه استفاده شد. سیستم مورد نظر در این تحقیق یک سیستم چندمخزنی خاص بود. به این مفهوم که علاوه بر بهینه نمودن میزان خروجی از هر مخزن، لازم بود تخصیص بهینه بین چهار منطقه کشاورزی به‌منظور تأمین نیاز آبیاری به‌طور همزمان انجام شده و نیازهای زیست‌محیطی نیز در هر بازه رعایت گردد. از الگورتیم مورچگان تعداد محدودی کاربرد در زمینه منابع آب یافت می‌شود، اما از کاربرد ACOR موردی به‌چشم نمی‌خورد. لذا برعکس روش GA کارایی روشهای مبتنی بر جامعه مورچگان در حل مسائل منابع آب در حد مناسب ارزیابی نشده است. در این تحقیق ACOR به‌عنوان جدیدترین روش از الگوریتم‌های جامعه مورچگان مورد بررسی و ارزیابی قرار گرفت. سپس، عملکرد این الگوریتم با GA مقایسه ‌شد. نتایج این بررسی نشان ‌داد که الگوریتم ACOR با افزایش تعداد متغیرهای تصمیم، علاوه بر افزایش زمان محاسبات، با کاهش میزان بهینگی مواجه خواهد شد و بدون ایجاد تمهیداتی، ACOR از حل مسائل پیچیده منابع آب ناتوان خواهد بود. برای غلبه بر بخشی از این مشکل، تکنیک‌های خاصی معرفی شد و در الگوریتم ACOR استفاده گردید. این تکنیک‌ها قادراند زمان محاسبات را به‌صورت قابل توجهی کاهش داده و نتایج را به‌طور محسوسی بهبود بخشند.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Ant-Colony-Based Algorithms to Multi-Reservoir Water Resources Problems

نویسندگان [English]

  • Alireza Borhani Darian 1
  • Amir Mohammad Moradi 2
1 Assoc. Prof. of Water Resources, Dept. of Civil Eng., Khajeh Nasir Toosi University of Tech., Tehran
2 M.Sc. Student, Dept. of Civil Eng., Khajeh Nasir Toosi University of Tech., Tehran
چکیده [English]

In this paper, the continuous Ant Colony Optimization Algorithm (ACOR) is used to investigate the optimum operation of complex multi-reservoir systems. The results are compared with those of the well-known Genetic Algorithm (GA). For this purpose, GA and ACOR are used to solve the long-term operation of a three-reservoir system in Karkheh Basin, southwestern Iran. The solution must determine monthly releases from the three reservoirs and their optimum allocations among the four agricultural demand areas. Meanwhile, a minimum discharge must be maintained within the river reaches for environmental concerns. Review of past research shows that only a few applications of Ant Colony have been generally made in water resources system problems; however, up to the time of initiating this paper, we found no other application of the ACOR in this area. Therefore, unlike GA, application of Ant-Colony-based algorithms in water resources systems has not been thoroughly evaluated and deserves  serious study. In this paper, the ACOR is stuided as the most recent Ant-Colony-based algorithm and its application in a multi-reservoir system is evaluated. The results indicate that with when the number of decision variables increases, a longer computational time is required and the optimum solutions found are inferior. Therefore, the ACOR would be unable to solve complex water resources problems unless some modifications are considered. To overcome a part of these drawbacks, a number of techniques are introduced in this paper that considerably improve the quality of the method by decreasing the required computation time and by enhancing optimum solutions found.

کلیدواژه‌ها [English]

  • Ant Colony Aglorithms
  • Genetic Algorithms
  • Multi Reservoir
  • optimization
  • Application
  • Operation
1- Simonovic, S. P. (2000). “Tools for water management-one view of the future.” Water International, 25(1), 76-88.

2- Labadie, J. W. (2004). “Optimal operation of multireservoir systems: State-of-the-art review.” J. of Water Resources Planning and Management, 130(2), 93-111

3- Goldberg, D. E. (1989). Genetic algorithms in search optimization and machine learning, Addison-Wesley, Inc.Reading,Massachusetts.

4- Gen, M., and Cheng, R. (1997). Genetic algorithms and Engineering design, John Wiley and Sans Inc.,New York.

5- Holland, J. H. (1975). Adsorptation in natural and artificial systems, Theuniversity ofMichigan Prees,Ann Arbor, Michingan.

6- Esat, V., and Hall, M. J. (1994). “Water resources system optimization using genetic algorithm.” Hydroinformatics, 94, 225-231.

7- Oliveira, R., and Loucks, D. P. (1997). “Operating rules for multireservoir systems.” Water Resources Research, 33(4), 839-852.

8- Wardlaw, R., and Sharif, M. (1999). “Evaluation of genetic algorithms for optimal reservoir system operation.” J. of Water Resources Planning and Management, 125(1), 25-33.

9- Sharif, M., and Wardlaw, R. (2000). “Multireservoir systems optimization using genetic algorithms: Case study.” J. of Computing in Civil Engineering, 14(4), 255-263.

10- Cai, X., McKinney, D. C., and Lasdon, L. S. (2001). “Solving nonlinear water management models using a combined genetic algorithm and linear programming approach.” Advances in Water Resources, 24(6),
667-676.

11- Chen, L. (2003). “Real coded genetic algorithm optimization of long term reservoir operation.” J. of the American Water Resources Association (JAWRA), 39(5), 1157-1165.

12- Tung, C. P., Hsu, S. Y., Liu, C. M., and Li, Jr. Sh. (2003). “Application of the genetic algorithm for optimizing operation rules of the LiYuTan reservoir in Taiwan.” J. of the American Water Resources Association (JAWRA), 39(3), 649-657.

13- Momtahen, Sh., and Borhani Darian, A. (2006). “Genetic algorithm (GA) method for optimization of mlti-reservoir system operation.” J. of Water and Wastewater, 56, 11-20. (In Persian)

14- Momtahen, Sh., and Borhani Dariane, A. (2007). “Direct search approaches using genetic algorithms for optimization of water reservoir operating policies.” J. of Water Resources Planning and Management, 133(3), 202-209.

15- Dariane, A. B., and Momtahen, Sh. (2009). “Optimization of multireservoir systems operation using modified direct search genetic algorithm.” J. of Water Resources Planning and Management, 135(3), 141-148.

16- Abbaspour, K. C., Schulin, R. and Van Genuchten, M.T. (2001). “Estimating unsaturated soil hydraulic parameters using ant colony optimization.” Advances in Water Resources, 24(8), 827-841.

17- Kumar, D. N., and Reddy, M. J. (2006). “Ant colony optimization for multi-purpose reservoir operation.” J. of Water Resources Management, 20(6), 879-898.

18- Jalali, M. R., Afshar, A., and Marino, M.A. (2007). “Multi-Colony ant algorithm for continuous multi-reservoir operation optimization problem.” Water Resources Management, 21, 1429-1447.

19- Zecchin, A.C., Maier, H. R., Simpson, A. R., Leonard, M., and Nixon, J. B. (2007). “Ant colony optimization applied to water distribution system design: Comparative study of five algorithms.” J. of Water Resources Planning and Management, 133(1), 87-92.

20- Borhani Darian, A., and Mortazavi Naeini, S. M. (2009). “Comparison of heuristic methods applied for optimal operation of water resources.” J. of Water and Wastewater, 68, 57-66. (In Persian)

21- Socha, K., and Dorigo, M. (2008). “Ant colony optimization for continuous domains.” European J. of Operational Research, 185(3), 1155-1173.

22- Dariane, A. B.,  and Moradi, A. M. (2008). “Reservoir operating by ant colony optimization for continuous domains (ACOR) case study: Dez reservoir.” International J. of Eng., and Natural Sciences, 3(2), 125-129.

23- Moradi, A. M., and Dariane, A.B. (2009). “Particle swarm optimization: Application to reservoir operation problems.” IEEE International, Advance Computing Conf., Patiala,India, 1048-1051.

24- Box, G. E. P., and Muller, M. E. (1958). “A note on the generation of random normal deviates.” Annals of Math. Statistics, 29 (2), 610-611.

25- Guntsch, M., and Middendorf, M. (2002). “A population based approach for ACO.” In: Cagnoni, S., Gottlieb, J., Hart, E., Middendrof, M., and Raidl, G. (Eds.), Applications of Evolutionary Computing, Proc. of Evo Workshops 2002: EvoCOP. EvoIASP, EvoSTim,Springer-Verlag,Berlin,Germany, vol. 2279 of LNCS, 71-80.

26- Water and Power Resources Development Co. (2009). <http://en.iwpco.ir/default.aspx>,(May 2009).

27- Mühlenbein, H., and Schlierkamp-Voosen, D. (1993). “Predictive models for the breeder genetic algorithm.” Evolutionary Computation, 1 (1), 25-49.