محاسبه احتمال رویداد شکست در شبکه‌های جمع‌آوری فاضلاب با استفاده از شبکه بیزین

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد مهندسی عمران- آب، دانشکده مهندسی عمران، پردیس دانشکده‌های فنی، دانشگاه تهران

2 استاد، عضو قطب علمی مهندسی و مدیریت زیر ساخت‌های عمرانی، دانشکده مهندسی عمران، پردیس دانشکده‌های فنی، دانشگاه تهران

چکیده

سامانه‌های فاضلاب به‌‌عنوان یکی از مهم‌ترین زیرساخت‌های شهری، وظیفه جمع‌آوری و تصفیه فاضلاب تولیدی به‌منظور بازگشت به طبیعت و یا استفاده مجدد از فاضلاب را بر عهده دارند که یکی از مهم‌ترین بخش‌های این سامانه‌ها، شبکه‌های جمع‌آوری فاضلاب است. عواقب ناگوار ایجاد شکست در این سامانه‌ها گاهی به حدی است که کارکرد بخشی از شهر را دچار اختلال می‌کند. عملکرد مناسب یک شبکه جمع‌آوری فاضلاب وابسته به برنامه بهره‌برداری و نگهداری آن است که با شناخت نقاط دارای احتمال شکست بالا، می‌توان با انجام بازرسی‌های مبتنی بر وضعیت سیستم، عملکرد و کارایی شبکه را به‌ میزان قابل توجهی افزایش داد. در پژوهش حاضر، مدلی برای محاسبه احتمال رویداد شکست در شبکه‌های جمع‌آوری فاضلاب با استفاده از شبکه بیزین معرفی شده است که با توجه به قابلیت‌های شبکه‌های بیزین و ویژگی‌های سیستم‌های فاضلاب، مدل ارائه‌شده از کارایی بالایی برخوردار است. روش ارائه شده دارای چهار گام اساسی آماده‌سازی ورودی‌های مدل، آموزش شبکه بیزین، صحت‌سنجی شبکه آموزش‌دیده و دریافت نتایج خروجی است. برای نشان دادن کاربرد روش معرفی‌شده، قسمتی از شبکه جمع‌آوری فاضلاب شهر تهران به‌‌‌عنوان مطالعه موردی انتخاب شد و با استفاده از احتمال رویداد شکست به‌دست آمده از مدل، فاضلابروها در پنج گروه از جهت اولویت برنامه‌های بازرسی و نگهداری تقسیم شده‌اند. نتایج، نشان‌دهنده احتمال شکست خیلی کم و کم (37 درصد) و متوسط (60 درصد) برای اکثر فاضلابروهای موجود در شبکه است که البته نو بودن بخش عمده شبکه جمع‌آوری فاضلاب تهران، می‌تواند از جمله عوامل آن باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Failure Event Probability Calculation in Wastewater Collection Systems Using the Bayesian Network

نویسندگان [English]

  • Mohammad Javad Anbari 1
  • Masoud Tabesh 2
1 Former Graduat Student of Civil and Water Engineering, School of Civil Engineering, College of Engineering, University of Tehran, Tehran
2 Prof., Center of Excellence for Engineering and Management of Civil Infrastructures, School of Civil Engineering, College of Engineering, University of Tehran, Tehran
چکیده [English]

Wastewater systems form an important urban infrastructure that are used for the collection and treatment of wastewater for return into the environment or water reuse. The sewers network in this system forms its most important component, any failure in which may lead to adverse consequences and disruption in urban life. Proper functioning of a sewers network depends on its operation and maintenance (O&M) program that requires timely inspections to identify the high risk sewers with any likelihood of failure in order to gurantee the sustained and sound performance of the whole network. In this study, the Bayesian network is used to develop a model  for calculating failure event probability in wastewater collection systems. Given the capabilities of the Bayesian network and the characteristic features of the sewers network, the proposed model is capable of predicting likely failure events. The procedure used for model implementation consists of the following four main steps: preparation of model inputs, training the Bayesian network, validation of the trained network, and receiving output results. To illustrate the application of this method, part of Tehran wastewater collection system is selected as a case study and failure probabilities are calculated. Based on the model results, Tehran sewers can be divided into five categories priotized according to inspection and maintenance requirements. The results indicate that the probability of failure for most of the existing sewers is very low and low (37%) or moderate (60%) due to the newly annexed sewers in the collection system.

کلیدواژه‌ها [English]

  • Failure probability
  • Wastewater Collection Network
  • Sewer
  • Bayesian Network

 

1. Grigg, N. S. (2003). Water, wastewater, and stormwater infrastructure management, Lewis Pub., Boca Raton, Florida.

2. Khan, Z., Zayed, T., and Moselhi, O. (2009). “Simulating impact of factors affecting sewer network operational condition.” Proc. of CSCE 2009 Annual General Conference, Montreal, Canada, 285-294.

3. Hahn, M., Palmer, R., and Merrill, M. (1999). “Prioritizing sewer line inspection with an expert system.” Proc. of ASCE, 29th Annual Water Resources Planning and Management Conference, Tempe, Arizona, United States, 1-9.

4. Hahn, M. A., Palmer, R. N., Merrill, S. M., and Lukas, A. B. (2002). “Expert system for prioritizing the inspection of sewers: Knowledge base formulation and evaluation.” J. Water Resources Planning and Management, 128(2), 121-129.

5. Najafi, M., and Kulandaivel, G. (2005). “Pipeline condition prediction using neural network models.” Proc. of Pipeline: Optimizing Pipeline Design, Operations and Maintenance in Today’s Economy, ASCE, Reston, VA., 767-781.

6. Baik, H. S., Jeong, H. S., and Abraham, D. M. (2006). “Estimating transition probabilities in Markov chain-based deterioration models for management of wastewater systems.” J. Water Resources Planning and Management, 132(1), 15-24.

7. Babani, J., Adams, B. J., and Wilson, B. G. (2008). “Integrating hydraulic and environmental performance assessments in asset management of wastewater collection networks.” Proc. of the 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK.

8. Wang, C., Niu, Z., Jia, H., and Zhang, H. (2010). “An assessment model of water pipe condition using Bayesian inference.” J. Zhejiang University-SCIENCE A (Applied Physics & Engineering), 11(7), 495-504.

9. Tavakolifar, H. (2008). “Developing of evaluation and readiness enhancement algorithm for urban water treatment systems against crisis.” MSc. Thesis, School of Civil Engineering, College of Engineering, University of Tehran, Iran. (In Persian)

10. FEMA. (2005). A how to guide to mitigate potential terrorist attacks against buildings, Risk Management Series, FEMA 452, USA.

11. Badali Bavani, E. (2012). “Developing an algorithm for risk management of wastewater treatment plants in crisis situations.” MSc. Thesis, School of Civil Engineering, College of Engineering, University of Tehran, Iran. (In Persian)

12. Asgarian, M. (2012). “An algorithm for assessment of wastewater collection network readiness in crisis situations by multi criteria decision making.” MSc. Thesis, School of Civil Engineering, College of Engineering, University of Tehran, Iran. (In Persian)

13. Roozbahani, A., Zahraie, B., and Tabesh, M. (2013). “Integrated risk assessment of urban water supply systems from source to tap.” J. Stochastic Environmental Research and Risk Assessment, 27(1), 923-944.

14. Roozbahani, A. (2012). “Risk based decision making model for urban water systems.” PhD Thesis, School of Civil Engineering, College of Engineering, University of Tehran, Iran. (In Persian)

15. Heckerman, D. (1996). A tutorial on learning with Bayesian networks, Microsoft Research Advanced Technology Division, Microsoft Corporation, Redmond, Washington, USA.

16. Nikoo, M. R., and Kerachian, R. (2009). “Evaluating the efficiency of Bayesian networks in river quality management: Application of the Trading-Ratio System.” J. Water and Wastewater, Vol.19.No.1 (65),
23-33. (In Persian)

17. ASCE. (1994). Existing sewer evaluation and rehabilitation, ASCE 62, New York.

18. Neapolitan, R. E. (2004). Learning Bayesian networks, Prentice Hall, New Jersey, US.

19. HUGIN EXPERT A/S, (2012). Hugin researcher userguide, Version 7.6, Aalborg, Denmark.

20. Kulkarni, R. B., Golabi, K., and Chuang, J. (1986). Analytical techniques for selection of repair-or-replace options for cast-iron gas piping systems-Phase I, Gas Research Institute, Chicago, Illinois.

21. Management and Planning Organization of Tehran Urban Developing Plans. (2006). “Strategic-structural plan of Tehran development (Tehran comprehensive plan).” Housing and Urbanization Ministry, Tehran Municipality, Tehran, Iran. (In Persian)

22. Lauritzen, S. L. (1995). “The EM algorithm for graphical association models with missing data.” J. Computational Statistics and Data Analysis, 19(1), 191-201.