تحلیل عدم‌‌قطعیت و حساسیت مدل انتقال آلاینده محلول در آب‌های زیرزمینی (مطالعه موردی: دشت قزوین)

نوع مقاله : مطالعه موردی

نویسندگان

1 دانش ‏آموخته کارشناسی ارشد، گروه مهندسی آب و سازه‏های هیدرولیکی، دانشکده مهندسی عمران، آب و محیط‌زیست، دانشگاه شهید بهشتی، تهران، ایران

2 دانشیار، گروه مهندسی منابع آب، دانشکده مهندسی عمران، آب و محیط‌زیست، دانشگاه شهید بهشتی، تهران، ایران

چکیده

مدل‌سازی کیفی آب‏های زیرزمینی ابزاری مفید برای شناسایی چگونگی انتقال آلاینده‏ها در محیط متخلخل آبخوان است. این مدل‏ها شامل پارامترهای متعددی هستند که اغلب بر اساس پژوهش‌های قبلی یا قضاوت کارشناسی برآورد می‏شوند یا در بهترین شرایط بر اساس اندازه‌گیری‌های محدود میدانی برآورد می‌شوند. در نتیجه داده‏های ورودی به مدل‏های ‏شبیه‏سازی، دقیق نبوده و همراه با خطا‏ هستند که این خطا‏ها باعث به وجود آمدن عدم‌قطعیت در نتایج مدل شبیه‏سازی می‏شود. هدف این پژوهش تحلیل عدم‌قطعیت و تحلیل حساسیت پارامترهای مدل جریان و مدل انتقال آلاینده‏ محلول در آب‌ زیرزمینی و تعیین پارامترهای حساس بر انتقال آلاینده‏ بود. به‌این منظور ابتدا با استفاده از مدل فرضی و تحلیل حساسیت به دو روش موضعی و جامع، پارامترهای حساس بر انتقال آلاینده تعیین ‌شد. پارامترهای مؤثر بر حداکثر غلظت آلاینده محلول از تحلیل حساسیت موضعی به‌ترتیب هدایت هیدرولیکی، ضریب کاهشی، تخلخل، ضریب توزیع و ضریب پخشیدگی و پارامترهای مؤثر بر زمان رسیدن به حداکثر غلظت به‌ترتیب هدایت هیدرولیکی، ضریب توزیع، تخلخل، ضریب پخشیدگی و ضریب کاهشی بودند. پارامترهای مؤثر بر حداکثر غلظت آلاینده محلول با توجه به نتایج تحلیل حساسیت جامع نیز به‌ترتیب هدایت هیدرولیکی، ضریب کاهشی، تخلخل، ضریب پخشیدگی و ضریب توزیع و پارامترهای مؤثر بر زمان رسیدن به حداکثر غلظت به‌ترتیب هدایت هیدرولیکی، ضریب توزیع، ضریب پخشیدگی، ضریب کاهشی (یا نرخ زوال) و تخلخل بودند. سپس مدل‌سازی جریان با مدل MODFLOW و مدل‌سازی انتقال آلاینده‏ها با مدل MT3DMS آب‌ زیرزمینی منطقه بررسی شده (دشت قزوین) بر اساس اطلاعات کیفی مربوط به یون‌های کلراید و نیترات انجام شد و با استفاده از پارامترهای مدل، تولید متغیرهای تصادفی به روش مونت‌کارلو که مناسب برای توابع پیچیده است، انجام شد. برای بیان تحلیل عدم‌قطعیت نمودارها تابع توزیع تجمعی مکمل CCDF غلظت کلراید و نیترات محاسبه و رسم شده است. با توجه به این نمودار تغییرات غلظت کلراید با احتمال 5 درصد برابر با 5/205 میلی‏گرم در لیتر، با احتمال 50 درصد برابر با 5/196 میلی‏گرم در لیتر، احتمال 95 درصد برابر با 4/185 میلی‏گرم در لیتر است. همچنین با توجه به نمودار CCDF نیترات، تغییرات غلظت نیترات با احتمال 5، 50 و 95 درصد به‌ترتیب برابر 56، 125/54 و 5/51 میلی‏گرم در لیتر حاصل شد. نتایج دو روش تحلیل حساسیت موضعی و جامع شبیه هم هستند. شایان ذکر است که این نتیجه مربوط به مدل فرضی است و ممکن است در شرایط دیگر نتایج متفاوتی حاصل شود.

کلیدواژه‌ها


عنوان مقاله [English]

Uncertainty and Sensitivity Analysis of Solute Contaminant Transport Simulation in Groundwater (Case Study: Qazvin Plain)

نویسندگان [English]

  • Nahid Sadat Jafari 1
  • Saeed Alimohammadi 2
1 Former Gratuated Student, College of Water and Hydraulic Structural Engineering, Dept. of Civil, Water and Environmental Engineering, Shahid Beheshti University of Tehran, Iran
2 Assoc. Prof. of Water Engineering, Dept. of Civil, College of Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran
چکیده [English]

Groundwater contaminant transport modeling is a useful tool for identifying how pollutants fate and transport in porous aquifer environments. These models include several parameters, which are often estimated based on personal judgment or in the best case, based on limited field measurements. Therefore, the input data of simulation models are not accurate and contain several errors. The purpose of this study is parameter uncertainty and sensitivity analysis in the groundwater solute contaminants transport modeling using probability theory. First, governing equations for groundwater flow and solute contaminant transport have been presented. Then, using MOFLOW for modeling groundwater flow and MT3DMS for modeling solute contaminant transport in a hypothetical problem and using effective parameters in a case study (Qazvin plain), uncertainty analysis through the Monte Carlo method was done. To illustrate the uncertainty analysis, the Complementary Cumulative Distribution Functions (CCDF) of Chloride and Nitrate graphs have been computed. Then using random samples, generated in uncertainty analysis step, local and global sensitivity analysis of solute transport model parameters have been determined.  Result: Using maximum concentration of solute contaminant as a model output, the results of the local sensitivity analysis show that the most sensitive parameters are hydraulic conductivity (K), decay rate constant (λ), porosity (θ), distribution coefficient (Kd), and dispersivity (D) respectively. While using time to maximum concentration as output variable, leads to the following order of sensitivity: K, Kd, θ, D, and λ. On the other hand, the global sensitivity analysis using maximum concentration shows that the order of sensitivity is: K, λ, θ, D, and Kd, and using time to maximum concentration it is: K, Kd, D, λ, and θ respectively. According to the CCDF of Chloride, concentrations of 5%, 50% and 95% equal 205.5, 196 and 185.4 mg/L respectively. Also, according to the CCDF of Nitrate the concentrations of 5%, 50%, and 95% equal 56, 54.125 and 51.5 mg/L respectively. All five parameters are sensitivite in solute transport modeling. The local and global sensitivity analysis show more or less the same results. In general, the sensitivity ranking of parameters is K, λ, Kd, θ, and D.

کلیدواژه‌ها [English]

  • Groundwater Contamination
  • Uncertainty Analysis
  • Sensitivity Analysis
  • Monte Carlo Simulation
Abkhan Consulting Engineers Company. 2013. Studies on updating the water resources balance report of Namak Lake catchment area, water balance report of Qazvin plain. Tehran Regional Water Company, Ministry of Energy, Tehran, Iran. (In Persian)
Behrouz, M. 2018. Uncertainty and sensitivity analysis of flood control levees design considering evidence theory. PhD Thesis, Shahid Beheshti University. Tehran, Iran. (In Persian)
Epstein, B. 1948. Some application of the Mellin transform in statistics, Annals of Mathematical Statistics, 19, 370-379.
Gelhar, L. W., Mantoglou, A., Welty, C. & Rehfeldt, K. R. 1985. EPRI report EA-4190, Elut. Power Res. Inst. California, Water Resource Research, 28, 1955-1974.
Gorelick, S. M. 1983. A review of distributed parameter groundwater management modeling methods. Water Resources Research, 19, 305-319.
Helton, J. C. 1993. Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal. Reliability Engineering & System Safety, 42, 327-367.
Mays, L. W. & Tung, Y. K. 1992. Hydrosystems Engineering & Management. McGraw Hill. USA.
McDonald, M. G. & Harbaugh, A. W. 2003. The history of MODFLOW. Groundwater, 41(2), 280-283.
Rojas, R., Feyen, L. & Dassargues, A. 2008. Conceptual model uncertainty in groundwater modeling: combining generalized likelihood uncertainty estimation and Bayesian model averaging. Water Resources Research, 44, W12418.
Tung, Y. K. & Yen, B. C. 2005. Hydrosystems engineering uncertainty analysis, McGraw-Hill, New York.
Park, C. S. 1987. The Mellin transform in probabilistic cash flow modeling. The Engineering Economist, 32(2), 115-134.
Zheng, CH. 1990. A Modular Three-Dimensional Multispecies Transport Model (MT3DMS). S.S. Papadopulos and Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). USA.
Zheng, Ch., Bennett, G. D. 2002. Applied Contaminant Transport Modeling. 2nd Edition. Wiley Interscience.