پیش‌بینی میان مدت خشکسالی هواشناسی با استفاده از روش استنتاج فازی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی عمران، دانشگاه آزاد اسلامی تهران، واحد علوم و تحقیقات، تهران

2 دانشیار دانشکده مهندسی عمران، عضو قطب علمی مهندسی و مدیریت زیرساختهای عمرانی، دانشگاه تهران

3 کاندیدای دکترا، دانشکده مهندسی عمران، دانشگاه تهران

چکیده

تلاش مؤثر به‌منظور تشخیص الگوی وقوع خشکسالی و پایش آن در تعیین رویکرد بهینه سیستم‌ مدیریت منابع آب به‌ویژه در کلان شهرهایی که از منظر اقلیمی در معرض وقوع حوادث خشکسالی واقع هستند، حائز اهمیت است. در این میان شهر تهران با بهره‌گیری از پنج حوضه آبریز و سدهای مربوطه شامل سد امیرکبیر، لار، لتیان و طالقان در معرض خشکسالی و لطمات آن واقع است. در این مقاله، از اطلاعات جوی در محدوده جغرافیایی [ ْ0، ْ60] شمالی و [ ْ0، ْ90] شرقی با دقت 10×10 درجه شامل داده‌های ماهانه دما و ارتفاع معادل فشار از سال 1948 تا 2008 میلادی در سطوح 1000، 850، 700، 500 و 300 میلی‌بار به‌عنوان ورودی مدل پیش‌بینی استفاده شد. این مدل که برای پیش‌بینی میان مدت خشکسالی هواشناسی توسعه داده شده قادر است با زمان پیش‌دید 2/5 و 4/5 ماه، نمایه بارش استاندارد شده در فصلهای زمستان و مجموع زمستان و بهار را پیش‌بینی نماید. این مدل با استفاده از داده‌های آماری در یک دوره 31 ساله، برای حوضه‌های آبریز سدهای تأمین کننده آب تهران، کالیبره شد. در این مقاله، پس از بررسی نقطه-پارامترهای جوی مؤثر بر الگوی بارش در مناطق مورد نظر با استفاده از شاخص متقابل اطلاعات که مبتنی بر آنتروپی مزدوج اطلاعات است، ورودی‌های مدل پیش‌بینی برای فصلها و حوضه سدهای مختلف انتخاب شدند. برای تدوین مدل پیش‌بینی از سیستم استنتاج فازی استفاده شد. توابع عضویت فازی براساس قضاوت کارشناسی و با تحلیل حساسیت روی دقت پیش‌بینی‌ها انتخاب شدند. بررسی‌های انجام شده در مورد حوضه‌های مورد مطالعه نشان داد که اطلاعات جوی منتخب در این تحقیق، ارتفاع معادل فشار در دو سطح مختلف 850 و 300 میلی‌بار است. نتایج گویای کارایی مناسب مدل‌های تدوین شده برای پیش‌بینی نمایه بارش استاندارد شده فصلهای زمستان و بهار در حوضه سدهای کرج و طالقان و نمایه بارش استاندارد شده زمستان در حوضه سدهای ماملو، لتیان و لار بود.
 

کلیدواژه‌ها


عنوان مقاله [English]

Mid-term Prediction of Meteorological Drought Using Fuzzy Inference Systems

نویسندگان [English]

  • Roohollah Ebrahimi 1
  • Banafsheh Zahraie 2
  • Mohsen Nasseri 3
1 M.Sc. Student of Civil Eng., Azad University, Sciences and Research Branch, Tehran
2 Assoc. Prof. of Civil Eng., Center of Excellence for Insrastrucure Eng., Tehran University
3 Ph.D. Candidate, Dept. of Civil Eng., Tehran University
چکیده [English]

Forecasting and monitoring droughts are important elements of optimum water resources management specifically in the metropolitan areas. Tehranas the biggest city of Iranand its five dams (Amirkabir, Lar, Latyan, Mamloo and Taleghan) are also exposed to drought hazards. In the current article, monthly meteorological data in the geographic area covering [0˚, 60˚] Northern latitudes and [0˚, 90˚] Eastern longitudes with 10×10 degree resolution including air temperature and geopotential height at 1000, 850, 700, 500 and 300 mbar levels are used as the model predictors. These data recorded in the period of 1948 to 2008 have been used to develop a model for forecasting SPI (Standardized Precipitation Index) values in Winter and Winter-Spring seasons with 2.5 and 4.5 months leadtime. This model has been calibrated using 31 years of data. Mutual Information (MI) index has been used to select the inputs (predictors) for each basin in each season. Fuzzy Inference System (FIS) has been used to formulate the model. The fuzzy membership functions have been selected based on sensitivity analysis and engineering judgment. The results of the study have shown that geopotential height in 850 and 300 mbar levels are the best predictors for forecasting SPI values in the selected seasons. The model results have had enough accuracy to be used for forecasting SPI values in Winter and Spring seasons inKaraj and Taleghan basins and SPI values in the Winter season in Mamloo, Latyan, and Lar basins.
 

کلیدواژه‌ها [English]

  • Drought forecasting
  • Standardized Precipitation Index (SPI)
  • Fuzzy Inference System (FIS)
  • meteorological drought
1- Wilhite, D.A., and Glantz,M.H. (1985).“Understanding the drought phenomenon: The role of definitions.” Water International, 10, 111-120.

2- Zahraie, B., Karamouz, M., and Eghdami, S. (2004). “Seasonal precipitation forecasting using large scale climate signals: Application to the Karoon river basin in Iran.” Proc., of the 6th International Conference on Hydroinformatics–Liong, Phoon and Babovic (eds),Singapore.

3- Bonaccorso, B., Bordi, I., Cancelliere, A., Rossi, G., and Sutera A. P. (2003). “Spatial variability of drought: An analysis of the SPI in sicily.” Water Resour. Manage., 17, 273-296.

4- Steinemann, A.(2003).“Drought indicators and triggers: A stochastic approach to evaluation.” J. of American Water Resources Association, 39(5), 1217-1233.

5- Loukas, A., and Vasiliades, L. (2004). “Probabilistic analysis of drought spatiotemporal characteristics in Thessaly region, Greece.” J. Natural Hazards and Earth System Sciences, 4, 719-731.

6- Labedzki, L., and Bak, B. (2005). “Drought mapping in polandusing SPI.” ICID Probabilistic Analysis of Drought Spatiotemporal Characteristics in Thessaly 21st European Regional Conference,Thessaly,Greece, 10-20.

7- Moreira, E.E., Paulo, A.A., Pereira, L.S., and Mexia, J.T. (2006). “Analysis of SPI drought class transitions using loglinear models.” J.  Hydrology, 331, 349-359.

8- Mishra, A.K., and Desai, V.R. (2006). “Drought forecasting using feed-forward recursive neural network.” Ecol. Modell., 198, 127-138.

9- Paulo, A.A., and Pereira, L.S. (2007). “Prediction of SPI drought class transitions using Markov chains.” J. Water Resour. Manage., 21, 1813-1827.

10- Moreira, E.E., Coelho, C.A., Paulo, A.A., Pereira, L.S., and Mexia, J.T. (2008). “SPI-based drought category prediction using loglinear models.” J. Hydrology, 354, 116-130.

11- Mehmet, A. Y., and Mahmut, F. (2009). “Adaptive neuro fuzzy inference system approach for municipal water consumption modeling: An application to Izmir, Turkey.” J. Hydrology, 365,  225-234,

12- Aurélio, A., and Carlos Roberto, D. (2008). “Application of fuzzy logic to the evaluation of runoff in a tropical watershed.” Environmental Modelling and Software, 23, 244-253.

13- Nourani, V., and Salehi, K. (2008). “Rainfall-runoff modeling using ANFIS and ANN-wavelet models.” 4th National Civil Eng. Conf., University of Tehran,Tehran. (CD ROM), (In Persian)

14- Zacharia, K., and John, N. (2009). “A fuzzy inference system for modeling stream flow: Case of Letaba river, south Africa.” J. Physics and Chemistry of the Earth, Parts A/B/C,  34, 688-700.

15- Postizadeh, N. (2006). “River flow forecasting using fuzzy inference system.” MSc. Thesis of Hydraulic Structures, Dept. of Agriculture,TarbiatModarrsUniversity,Tehran. (In Persian)

16- Karamouz, M., Tabesh, M., Nazif, S., and Moridi, A. (2005). “Estimation of hydraulic pressure in water network using artificial neural network and fuzzy logic.” J. of Water and Wastewater, 56, 3-14. (In Persian)

17- Jamali, S., Abrishamchi, A., and Tajrishi, M. (2007). “River stream-flow and Zayanderoud reservoir operation modeling using the fuzzy inference system.” J. of Water and Wastewater, 64, 25-34. (In Persian)

18- Abedini, M. J., and Nasseri, M. (2008). “Inverse distance weighted revisited.” 4th APHW, Conf. Beijing, China, (CD ROM).

19-Lashkari, H. (1996). “Synoptic precipitation pattern of extreme south westIran.” Ph.D. Thesis of Climatology,TarbiatModarresUniversity,Tehran. (In Persian)

20- Bowden, G. J., Dandy G. C., and Maier, H. R. (2005a). “Input determination for neural network models in water resources applications, Part 1-background and methodology.” J. Hydrology, 301, 75-92.

21- Bowden, G. J., Dandy, G. C., and Maier, H. R. (2005b). “Input determination for neural network models in water resources applications, Part 2. Case study: Forecasting salinity in a river.” J.  Hydrology., 301, 93-107

22- Nasseri, M., Asghari, K., and Abedini, M. J. (2008). “Optimized scenario of rainfall forecasting using genetic algorithms and artifitial neural networks.” Expert Systems with Applications., 35(3), 1415-1421.

23- Sudheer, K. P., Gosain, A. K., and Ramasastri, K. S. (2002). “A data driven algorithm for constructing artificial neural network rainfall-runoff models.” Hydrological Process, 16, 1325-1330.

24- Witten, I.H., and Frank, E. (2005). Data mining: Practical machine learning tools and techniques, Morgan Kaufmann Pub.,Amsterdam.

25- He, Z., Xu, X., and Deng, Sh. (2008). “k-ANMI: A mutual information based clustering algorithm for categorical data.” Information Fusion., 9, 223-233.

26- Maya, R. J., Dandy, G., Maier, H. R., and Nixon J. B. (2008). “Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems.” Environmental Modelling and Software., 23, 1289-1299.

27- Maya, R. J., Maier H. R., Dandy, G., and Fernando, G.T.M.K. (2008). “Non-linear variable selection for artificial neural networks using partial mutual information.” Environmental Modelling and Software., 23,  1312-1326.

28- Wua, J., Chen, J., Xiong, H., and Xie, M. (2008). “External validation measures for K-means clustering: A data distribution perspective.” Expert Systems with Applications, 36 (2), 6050-6061.