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Abstract  
Groundwater is an important source of freshwater the world over, especially in arid and 
semiarid regions. In recent years, groundwater overextraction has led to a serious drawdown in 
groundwater level in many aquifers. Hence, the projecting groundwater level is essential for the 
planning and management of water resources in a basin scale. This study aimed to project the 
mean groundwater level in Najafabad Plain in central Iran. Najafabad Plain is one of the most 
important aquifers in the Zayandeh-Rud River basin currently facing a negative hydrologic 
balance, which has been aggravated by the excessive agricultural demand that has adversely 
affected its groundwater level. For the purpose of the study, a multilayer perceptron Artificial 
Neural Network (ANNs) was developed. Recently, alternative algorithms have been used for 
training ANNs to overcome the disadvantages of the Back Propagation (BP) algorithm that is 
easily stuck in local minima and slow training convergence. In this regard, the Levenberg–
Marquardt algorithm as the classical method and the Particle Swarm Optimization (PSO) as the 
evolutionary algorithm are adopted for training the feed forward ANNs and improving their 
performance. The obtained results from LM-NN were then compared with those from ANN-
PSO model and observed information. Comparison of the results projected by the ANN-PSO 
and the observed mean groundwater levels using 58 piezometric wells with monthly time steps 
over a 20-year period showed that the ANN-PSO model is superior to LM in predicting 
groundwater level. As an illustration, for models run using nine hidden neurons for Nekouabad 
right zones the root mean square error (RMSE) of the testing dataset for ANN-PSO was the 
lowest (1.50) compared to those for LM-NN (1.76). Accordingly, the ANN-PSO models are 
able to be used as a reliable tool for evaluating different scenarios of the water resources 
management in the study aquifer. Finally, three management scenarios under two climate 
change scenarios, A2 and B1 (obtained from GCMs), were defined and the trained ANN-PSO 
was subsequently used to project the effects of each scenario on the groundwater level in the 
plain. 
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1. Introduction 
Over the past decades, there has been a dramatic increase 
in the number of studies which have focused on 
predicting groundwater level. Groundwater resources has 
received much attention in recent years because of its 
importance as a source of freshwater especially during 
drought periods. The exploitation of groundwater has 
grown as agricultural, industrial, and domestic uses have 
led to a greater drawdown in many basins of the world. 
On the other hand, climate change has also affected 
water resources adversely due to changes in the 
components of the hydrologic cycle (USEPA, 2008). 
Nowadays, water crisis is an imminent challenging issue 
due to the global warming, changes in the pattern and 
intensity of rainfall, amounts and duration of snow 
cover, rising sea level, increasing evapotranspiration, 
and quantitative and qualitative changes in surface water 
and groundwater resources (Kolsoumi and Salehnia, 
2009). These changes can substantially affect water 
resources management practices (Ashofteh et al., 2016, 
Safavi et al., 2016). The impacts of climate change on 
groundwater are relatively limited compared to surface 
water (USEPA, 2008). Recently, some researchers 
investigated the climate change impacts on groundwater 
recharge and groundwater level (Croley and Luukkonen, 
2003, Brouyère et al., 2004, Scibek and Allen, 2006, 
Tapoglou et al., 2014, Zhang, 2015, Mani et al., 2016, 
Goodarzi et al., 2016, Smerdon, 2017, Cuthbert et al., 
2019, Chunn et al., 2019, Guermazi et al., 2019). 

To date, there have been many studies to predict the 
groundwater level using mathematical models. Models 
are categorized as black-box models, conceptual models 
and physically based distributed models. In view of 
accuracy, the physically based distributed model can be 
considered a better choice. However, the notable data 
requirements of such models, coupled with the time 
involved in model development, calibration and 
validation compared to other model categories, make 
them an undesirable choice. Lumped conceptual models 
are favored in terms of their limited data requirements 
and inclusion of a conceptual framework, but they 
require a lengthy calibration and parameterization 
process (Sarangi et al., 2005). 

In other words, physical models work best when data 
on the physical characteristics of the watershed are 
available at the model grid scale. This kind of data is 
rarely available, even in heavily instrumented research 
watersheds. Furthermore, these models require historical 
data for model calibration purposes (ASCE, 2000). In 
this context, use of Artifical Neural Network1 models 
offer an alternative to the distributed and physics-based 
modelling approaches. It enjoys the capacity to 
distinguish any connections between input and output 
data in the absence of any physical assumptions or 

 
1 Artifical Neural Network (ANN) 

principles (Coppola Jr et al., 2003). Many studies 
worldwide have examined the ability of ANN for the 
prediction of groundwater levels using such varied input 
parameters as precipitation, temperature, pumping rate, 
and evapotranspiration. (Coppola Jr et al., 2003, 
Lallahem et al., 2005, Mohanty et al., 2010, Safavi et al., 
2010, Trichakis et al., 2011, Bozorg-Haddad et al., 2013, 
Karthikeyan et al., 2013, Sahoo and Jha, 2013, Fallah-
Mehdipour et al., 2014, Chang et al., 2015, Mohanty et 
al., 2015, Safavi and Rezaei, 2015, Yan and Ma, 2016, 
Khaki et al., 2016, Yoon et al., 2016, Jeihouni et al., 
2019). Back Propagation (BP) algorithm is the most 
common technique that has been used for ANN training 
in a host of studies. However, being a gradient-based 
method, it has certain disadvantages; for instance, it 
easily gets stuck in local minima and has a slow training 
convergence (Garro et al., 2009). Many studies have 
been developed to improve the performance of the back-
propagation algorithm by developing training algorithms 
such as Levenberg–Marquardt algorithm. Levenberg–
Marquardt algorithm is the most popular and commonly 
used neural network training algorithm. Furthermore, 
several studies have developed evolutionary algorithms 
such as Genetic Algorithms (Leung et al., 2003, Jha and 
Sahoo, 2015) and Particle Swarm Optimization (Zhao 
and Qian, 2011) to improve the performance of classical 
neural network training.  

Particle Swarm Optimization2 is an evolutionary 
computation technique first developed by (Kennedy and 
Eberhart, 1995). PSO is a population-based search 
algorithm based on the study of colonies or swarms of 
social organisms such as birds or fish (Kennedy and 
Eberhart, 1995). Use has been made of this technique in 
various water engineering studies such as reservoir 
modeling and operation (Guo et al., 2013, Luo et al., 
2015), water quality management (Afshar et al., 2011), 
hydraulic modeling and optimization (Zhen-zhong et al., 
2010, Buyukyildiz and Tezel, 2015), estimating 
hydrologic parameters (Chu and Chang, 2009, 
Moghaddam et al., 2016), rainfall-runoff modeling (Liu, 
2009), water distribution systems (Sheikholeslami and 
Talatahari, 2016), and groundwater utilization (Gaur et 
al., 2013, Cyriac and Rastogia, 2015). The ANNs are 
coupled with PSO in many hydrological studies. Some 
cases include the prediction of water levels in the Shing 
Mun River in Hong Kong (Chau, 2006), modeling the 
daily rainfall-runoff relationship (Kuok et al., 2010), 
prediction of storage coefficient and transmissivity of 
aquifers (Ch and Mathur, 2012, Mohammad Rezapour 
Tabari, 2015), simulation of hydraulic head changes in 
an observation well in the area of Agia in Greece 
(Tapoglou et al., 2014), prediction of future stream flow 
discharges in the Shenandoah River watershed 
(Taormina and Chau, 2015), and daily runoff forecasting 

 
2 Particle Swarm Optimization (PSO) 
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(Cheng et al., 2015). 
This study focuses on projecting groundwater level 

under different management scenarios and climate 
change conditions. An artificial neural network trained 
by PSO is developed to simulate the mean groundwater 
level in Najafabad Plain as the case study. Zayandehrud 
River basin is located in central Iran with semi-arid 
region. In recent years, increased demand has led to 
pumping of groundwater from aquifer for irrigation, 
industrial development and domestic uses. This over 
extraction and climate change have led to increasing 
pressure on groundwater resources. 

 
2. Materials and methods 
2.1. Study Area 
To assess the applicability of the proposed methodology, 
it is applied to the Najafabad plain, part of the 
Zayandehrud River basin located in the western part of 
central Iran (Fig. 1). Najafabad plain has an area of 
around 1,720 km2 and its aquifer has an area of around 
1,142 km2 with geographical coordinates between 50′
57″ to 51′ 44″ north longitude and 32′ 20″ to 32′ 49″ east 
latitude. The aquifer is recharged by irrigation 
percolation, channel and river seepage, and direct 
precipitation. Aquifer recharge incidental to irrigation is 
a significant component of the water budget and varies 
with the evolution of irrigation practices (Safavi et al, 
2010). 

Modern surface irrigation practices in the area started 
some 45 years ago after the construction of the 
Nekouabad diversion weir. This diversion weir controls 
both the left and right bank main zones (Fig. 1). 

Assessment of water exchanges in a given area is 
based on the principle of conservation of mass. 
Hydrological equilibrium is defined as the persistence of 
the water cycle in an area. In fact, all the water within a 
specific period of time in a particular area is either used 
or stored, or exists in the area in different ways. The 
components that feed the aquifer include surface and 
subsurface inflow and outflow, precipitation, imports 
from rivers and irrigation channels, and the return water 
from agricultural lands. The components of aquifer 
depletion contain abstraction of groundwater from wells 
and evapotranspiration. 

In this study, all required data from hydrometrical 
and meteorological stations, history of channels 
operation and extraction wells data such as their 
groundwater levels and pumping rates were obtained 
from a report published by Isfahan Regional Water 
Company, 2014. Rainfall and temperature data for the 
statistical period of October 2000 to September 2019, 
extracted from Zefre station on a monthly basis, are used 
as the input variable for the ANN models in calibration. 
The historical data was collected from 51 piezometric 
wells within the study area and 7 piezometric wells 
outside the region (Fig. 2). ArcGIS was used to 

interpolate the data and to derive the mean groundwater 
level for each of the Nekouabad left and right irrigation 
zones. One of the best ways to calculate the amount of 
water recharged into the aquifer from the river is to 
measure simultaneously the river flows at at least two 
consecutive sections along the river. The difference may 
be considered as the water recharged by the river into the 
aquifer. There are two hydrometric stations with long-
term data, namely the Leng Station at the entrance to the 
aquifer and Musian Station near the exit from the aquifer 
(Fig. 3). No water is extracted along the distance 
between these two sections.  
 
2.2. Artificial Neural Networks 
ANNs belong to the category of empirical models 
because they regard the process as a black box system 
with inputs and outputs (Dawson and Wilby, 2001). 
Unlike physical models, ANNs do not require the 
physical characteristics or conditions of the systems 
analyzed. They are less data and labor intensive but more 
cost effective than their counterparts (Mohanty et al., 
2010).  

Feed forward neural network is one of the simplest 
architectures widely used in water resources 
management. In this type of neural network, the data 
flows through the network in a single direction from an 
input layer to the output one via hidden layer(s) 
(Mohanty et al., 2010). 

Three data sets are commonly recommended to be 
employed for an accurate analysis of ANN: a training 
(calibration) set, a testing set, and a validation set. The 
training data set is the initial dataset used to adjust the 
weights and biases to minimize the error function and to 
maximize accuracy in each iteration. In order to ensure 
that the network does not overfit, the test set is helpful. 
This set is regarded as part of the training set which is 
used to fine tune the parameters and to determine when 
the training process should be terminated. Finally, the 
validation set is necessary to evaluate the accuracy of the 
model against unseen data (Dawson and Wilby, 2001). 
Data normalization is also essential to avoid overturning. 
The normalization technique used in this study is the 
Gaussian function with a mean of 0 and the unit standard 
deviation is expressed as follows 

minmax

min
n XX

XXX
−

−
= (1) 

where 
Xmax and Xmin are maximum and minimum data and Xn
represents normalized data. 

In order to evaluate the accuracy and effectiveness of 
the ANN model, three different criteria are used. The 
first one is the Coefficient of Determination calculated as 
follows 
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Fig. 1. Location of the Najafabad plain in the Zayandehrud River basin and Nekouabad irrigation network 

 

Fig. 2. Locations of the piezometric wells in Najafabad plain 
 

Fig. 3. Locations of the Leng and Musian hydrometric stations 
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Fig. 4. Artificial neural network input and output diagram 
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The second one is the RMSE1 and the last one is the 
APE2 given by (3) and (4), respectively 
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where 
T(i) is the observed data, O(i) is the calculated data, and 
N is the number of observations made. The best fit 
between the observed and the calculated data will give 
RMSE and APE close to zero and R2 close to 1. 

In this study, a multi-layer perceptron feed forward 
neural network architecture was employed to simulate 
the water equilibrium in the study plain. In addition, 
tansig is the neural transfer function in all layers.As 
shown in Fig. 4, the ANN model has six nodes in its 
input layer that consist of mean groundwater level at the 
beginning of the month, monthly rainfall, average 
monthly temperature, groundwater pumping volume, 
volume of water entering the zones, and the monthly 
 
1 Root Mean Square Error (RMSE) 
2 Average Percentage Error (APE) 

flow at the gauging stations at the nearest hydrometric 
stations. The set of inputs to the ANN are selected 
according to previous studies in this basin and the 
experts and relevant specialist opinions. Selected input 
parameters are the most important and have the greatest 
impact on groundwater levels. For example, the 
evaporation is not considered as an input variable 
because of the low groundwater level in this area. Due to 
the fact that the evaporation variable cannot have a direct 
effect on low groundwater level fluctuations. Also, there 
are no absorption wells in the area and due to the 
presence of the sewerage network, the leakage of sewage 
into groundwater is negligible.

The collected data cover a period of 240 months from 
October 2000 to September 2019. The mean 
groundwater level at the end of the month is considered 
as the only node for the output layer. The database is 
randomly divided into three patterns to ensure each 
pattern comprises the dry, wet, and normal periods. Out 
of the available data, 60% (144 patterns) is used as the 
training (or calibration) set, 20% (48 patterns) is set 
aside for testing, and 20% (48 patterns) for validation. 
 
2.3. Particle Swarm Optimization 
PSO is an evolutionary population-based model which 
has been successfully applied to a wide variety of 
optimization problems. It has attracted considerable 
attention of researchers because of its advantages such as 
simple concept, easy implementation, computational 
efficiency, rapid convergence, lower number of 
parameters to be tuned, and less sensitive parameters 
(Lee and Park, 2006). 

PSO is initialized with a population of random 
solutions called particles. The particles constitute a 
swarm that move around in the search space and look for 
the best solution. Each particle in PSO is also associated 
with a velocity which is adjusted according to its own 
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flying experience as well as the flying experience of 
other particles. Each particle keeps track of its “best” 
(highest fitness) position in the solution space. This is 
called “Pbest” for an individual particle and “Gbest” for 
the best in the population. 

The basic concept of the PSO can be found in 
(Tsafarakis et al, 2013). Fig. 5 shows the flowchart of 
PSO.  

The first new parameter added to the original PSO 
algorithm is the inertia weight (Shi and Eberhart, 1998). 
It has been introduced in order to control the exploration 

and exploitation abilities of the swarm and to eliminate 
the need for velocity clamping. Hence, the velocity of 
each particle is updated according to Equation 5. The 
major inertia weight facilitates the global search while 
the minor inertia weight facilitates the local search. A 
number of different strategies have been suggested for 
determining the value of inertia weight during a run. 
Three main groups of these approaches are constant, 
time-varying, and adaptive inertia weights (Nickabadi et 
al., 2011) 

Fig. 5. Flowchart for particle swarm optimization (Tsfarakis et al., 2013) 
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)]t(xGbest)[t(rc
)]t(x)t(Pbest)[t(rc)t(w)1t(
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ijijj11ijij

−
+−+ν=+ν

(5) 

(Clerc and Kennedy, 2002) introduced the constriction 
factor in order to improve the standard algorithm and to 
control the particle’s path without limiting its velocity. 
The velocity equation may be replaced with Equation 6 
below

 

)])t(xGbest)[t(
)]t(x)t(Pbest)[t()t((x)1t(

ijj2

ijij1ijij

−φ
+−φ+ν=+ν

(6)  

where 
χ is the constriction factor which is fixed during a run 
according to (7) below 
 

φ−φ+φ−
=

42

2x
2

(7) 

While 
 

21 φ+φ=φ (8) 
 
and 

4>φ (9) 
 
Typically, φ1 and φ2 are set to 2.05, which corresponds to 
a value of 0.7298 for χ. In this case, the particle’s 
efficiency is excellent (Qiu and Liu, 2009). 
 
2.4. Particle Swarm Optimization Feed Forward 
Neural Network1

There are three important points for neural network 
training, namely finding a near optimal topology, 
synaptic weights, and transfer function for each neuron 
(Yusiong and Naval, 2006). In this study, PSO is applied 
to find a near optimal set of synaptic weights for a fixed 
structure. In order to achieve this goal, each particle is 
represented by a matrix composed of synaptic weights 
and biases. The fitness function for each particle is the 
MSE2. The particle will move within the weight space to 
optimize its fitness function. The PSONN algorithm can 
be described by the text outlined in 2.3 above. The 
search space is an important aspect of convergence to the 
solution. An insignificant search space does not provide 
enough freedom for the particles to explore the space 
and, thus they fail to find the best position. Hence, the 
convergence rate decreases when there is no limit on the 
search space range (Gudise and Venayagamoorthy, 
2003). The swarm size depends on the problem. In this 

 
1 Particle Swarm Optimization Neural Network (PSONN) 
2 Mean Squared Error (MSE) 

study, 80 particles are limited in the range [‐10,10] and 
the stopping criterion is defined as a limit of up to 800 
iterations. 
 
3. Results and discussion 
3.1. ANN-PSO simulation model 
With the aim of this study, two independent models are 
developed for simulating the Nekouabad left and right 
irrigation zones. With respect to this case study, two 
different algorithms, PSO-based and Levenberg–
Marquardt, were employed to identify the more efficient 
network. Considering that there are no specific rules for 
formulating the ANN structure, the number of hidden 
layers and the neurons in each layer could be determined 
by trial and error in order to achieve the most accurate 
simulation. However, a general rule to follow is that the 
lower the number of neurons, the more accurate the 
simulation of the network will be, whereas too many 
nodes lead to overfitting (ASCE, 2000). 

Coulibaly et al., suggested more than twenty-three 
rules for training neural networks, though none 
guaranteed a global solution (Coulibaly et al., 1999). A 
review of recent studies reveals that neural networks 
trained by the standard back-propagation algorithm 
account for more than 90 percent of the ones used in 
most studies (Mohanty et al., 2010).  

A trial and error procedure was needed to determine 
the network architecture. The network architecture has a 
significant influence on the performance of ANNs. If the 
network architecture is too simple, the ANN model 
might not have much freedom to train, while too 
complicated architectures might take a long time for the 
network to be trained due to over-fitting. So in this 
study, three categories of network architecture for each 
LM and PSO training algorithm were tested to determine 
the best network architecture. Three architectures are 
defined in such a way that they are in the low, medium 
and high complexity levels, respectively. 

Table 1 and Table 2 provide the comparison results 
of two different algorithms with three different networks 
for Nekouabad left and right zones, respectively. Clearly, 
the PSO-based algorithm with nine hidden neurons 
outperformed the LM3 one, especially as regards the 
validation process. This structure recorded a lower 
Average Percentage Error and a higher Coefficient of 
Determination. This was, therefore, selected as the best 
structure. 

3.2. Scenario development 
The selected ANN was used to evaluate the impacts of 
different management scenarios on the mean 
groundwater level under climate change conditions in  

 

3 Levenberg- Marquardt (LM) 
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Table 1. Simulation results for Nekouabad left irrigation zone 

Nekouabad 
left 

Network 
structure APE (%) R2 (%) RMSE 

Algorithm First 
layer 

Second 
layer 

Train Test Validation Train Test Validation Train Test Validation 

PSO-based 
9 0 3.52 5.68 4.31 97.58 93.82 95.80 1.39 2.05 1.66 
8 6 4.17 5.41 5.37 96.19 95.43 91.25 1.71 1.75 2.33 

11 4 4.51 7.03 7.82 96.41 87.11 90.12 1.61 3.01 2.67 

LM 
8 0 1.62 5.83 6.44 99.57 90.36 91.15 0.57 2.55 2.48 
8 6 2.91 6.26 6.86 98.19 92.78 90.51 1.07 2.30 2.58 

10 5 3.84 7.00 7.83 96.23 89.99 88.61 2.76 2.68 1.69 

Table 2. Simulation results for Nekouabad right irrigation zone 
Nekouabad 

left 
Network 
structure APE (%) R2 (%) RMSE 

Algorithm First 
layer 

Second 
layer 

Train Test Validation Train Test Validation Train Test Validation 

PSO-based 
9 0 4.39 5.17 5.80 92.65 90.12 91.17 1.43 1.50 1.61 
9 4 4.75 5.97 6.15 92.03 88.35 89.42 1.44 1.68 1.78 

11 4 6.48 8.82 9.31 89.94 76.05 76.54 1.71 2.32 2.35 

LM 
9 0 4.45 6.18 5.73 92.06 88.20 90.12 1.48 1.76 1.64 
9 4 4.24 6.22 5.24 93.17 86.82 88.40 1.37 1.83 1.75 

11 5 4.05 5.97 6.20 93.93 88.35 86.51 1.28 1.67 1.96 

the study area. The results obtained from the AOGCMs1

(Wilby and Harris, 2006) serve as the best tool for 
making projections. These models are solved for a global 
3D gridded network by considering atmosphere-ocean 
interactions. 

In this study the obtained results by (Safavi et al., 
2016) have been used. In the mentioned study, 15 
general circulation models have been used to predict 
changes in precipitation and temperature parameters in 
Zayandrood Basin for the next period around 2015-2044. 
For more details about downscaling and using 
probabilistic ensemble modeling, see (Safavi et al., 
2016).  

Management scenarios were then developed in 
accordance with the characteristics of the water 
resources in the study area where agricultural irrigation 
accounts for the main water consumption. These 
scenarios are considered for the period 2020 to 2024 that 
correspond to the scenario of trend analysis aimed at 
reducing groundwater abstraction and increasing surface 
water supply in order to keep the area under cultivation. 
Finally, time series were generated in accordance with 
the scenarios defined and considered as input to the 
trained ANN. 
 

3.2.1. Scenario 1 (Trend scenario) 
In the trend scenario, which is considered as a zero-
conjunctive scenario, volume of surface water regardless 
of climate change issues, has been considered 
historically, and groundwater abstraction despite the 

 
1 Atmosphere-Ocean General Circulation Models (AOGCMs) 

development has been considered in the current 
situation. The aim of this scenario was to estimate 
fluctuations of mean groundwater level for each 
irrigation zone in Najafabad Plain under the two climate 
change scenarios of A2 and B1. Fig. 6 presents the mean 
groundwater level results of this scenario under the 
climate change scenarios for the Nekouabad left and 
right irrigation zones. Overall, A2 led to a greater 
decline in the mean groundwater level of the aquifer in 
Nekouabad left irrigation zone than B1 did, while an 
opposite trend was observed in the case of Nekouabad 
right irrigation zone. 
 
3.2.2. Scenario 2 (Reducing groundwater 
extraction) 
One of the most critical factors affecting water level in 
the study area is groundwater abstraction. The amount of 
water extracted under Scenario 2 reduces by an annual 
quantity of ten percent over the period from 2020 to 
2024 while other parameters remain constant. 
Comparison results for two scenarios which are trend 
analysis and reducing groundwater abstraction under the 
two climate scenarios A2 and B1 for the Nekouabad left 
and right irrigation zones are presented in Fig. 7 and 8 
respectively. Obviously the reducing groundwater 
extraction coupled with the A2 scenario in Nekouabad 
left irrigation zone leads to less decline in groundwater 
level by mid 2021, this is while under scenario B1 the 
aquifer thickness generally grows due to reduced 
pumping except for 2022 and 2023. In Nekouabad right 
irrigation zone, however, both scenarios A2 and B1 lead  
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Fig. 6. Mean groundwater level in the trend analysis under the two climate change scenarios A2 and B1. 
a) Nekouabad left, b) Nekouabad right 

 

Fig. 7. Comparison of mean groundwater levels in the trend analysis and reducing groundwater  
extraction scenarios in Nekouabad left: a) A2, and b) B1 climate change scenarios 

Fig. 8. Comparison of mean groundwater levels in trend analysis and reducing groundwater extraction 
scenarios in Nekouabad right: a) A2, and b) B1 climate change scenarios
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to a rise in the mean groundwater level albeit it 
experiences some fluctuations rather than being steady. 

3.2.3. Scenario 3 (Increasing surface water 
supply) 
Another critical factor affecting the mean groundwater 
level in this area is the amount of surface flow entering 
the zones. In this scenario, the entered volume of surface 
water increases as much as the groundwater pumping 
reduction in the previous scenario. In other words, the 
cultivation area will remain unchanged but the source of 
water supply will change from groundwater to surface 
water. Comparison results for two scenarios which are 
trend analysis and increasing surface water supply under 
the two climate scenarios A2 and B1 for the Nekouabad 
left and right irrigation zones are presented in Fig. 9 and 
10 respectively. Clearly, under the A2 and B1 climate 

change scenarios, applying the increasing surface water 
supply scenario to the Nekouabad left irrigation zone led 
to a lower decline in the groundwater level throughout 
the study years. Applying the same scenario to the 
Nekouabad right irrigation zone under the climate 
change scenario B1, however, led to a clearly lower 
decline in groundwater level towards the end of the year 
2020 by up to the mid-2022. Adopting the increasing 
surface water scenario under the climate scenario A2 
increased the water level in the plain in all the study 
years albeit with some fluctuations. 

To illustrate the accuracy of simulation models, the 
mean groundwater levels projected by the ANN trained 
with PSO and the observed data for the reducing 
groundwater extraction scenario coupled with the B1 
climate change scenario for the left irrigation zone are 
provided in Fig. 11. 

Fig. 9. Comparison of mean groundwater levels in trend analysis and increasing surface water supply 
scenarios in Nekouabad left: a) A2 and b) B1 climate change scenarios 

 

Fig. 10. Comparison of mean groundwater levels in trend analysis and increasing surface water supply 
scenarios in Nekouabad right: a) A2 and b) B1 climate change scenarios 
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Fig. 11. Mean groundwater levels for the entire historical period: the scenario of reducing groundwater  
extraction under the B1 climate change scenario in the left irrigation zone 

 
4. Conclusions 
This study set out to investigate the PSONN model for 
forecasting mean groundwater levels using such 
parameters as the observed mean groundwater level at 
the beginning of the month, monthly rainfall, average 
monthly temperature, groundwater pumping, volume of 
water imports into the study zones, and the monthly 
flows at the gauging stations at the nearest hydrometric 
stations in Najafabad Plain. Weights and biases of the 
neural network were taken as the decision variables, and 
the network error was regarded as the objective function 
to be minimized. The finding revealed that the forecasted 
water level by the PSO-based training was more accurate 
than those rendered by the commonly used Levenberg–
Marquardt model. 

Three management scenarios coupled with two 
climate change scenarios of A2, B1 were defined, and 
their effects in the study area were investigated. The first 

scenario was based on the assumption that the current 
groundwater abstraction trend will continue over the 
next 5 years as a baseline scenario. The second scenario 
assumed a decreasing trend in abstraction from the wells 
in the study area, and the third scenario involved an 
increase in surface water imports into the irrigation 
zones to maintain the present area under cultivation. The 
volumes of groundwater abstraction and surface water 
diversion were determined for each scenario. The results 
from the present study clearly indicate that PSONN is a 
successful model as it helps water manager to forecast 
groundwater level. Fluctuations in the mean groundwater 
levels under the three management scenarios and the two 
climate change scenarios A2 and B1 showed that surface 
water diversion into the irrigation zones needs to be 
increased while pumping from the study aquifer should 
be reduced in order to lessen the present trend in 
groundwater level drawdown over the next five years.
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