حذف هیدروژن سولفید از آب ترش پالایشگاه تبریز با استفاده از جاذب زئولیت کلینوپتیلولیت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه علوم و مهندسی محیط‌زیست، واحد اردبیل، دانشگاه آزاد اسلامی، اردبیل، ایران

2 دانشیار، گروه علوم و مهندسی محیط‌زیست، واحد اردبیل، دانشگاه آزاد اسلامی، اردبیل، ایران

3 استادیار، گروه علوم و مهندسی محیط زیست، واحد اردبیل، دانشگاه آزاد اسلامی، اردبیل، ایران

چکیده

هیدروژن سولفید (H2S) گازی سمّی، بد بو، بی‌رنگ، آتش‌گیر و دارای خاصیت اسیدی است. مشکلات عمده هیدروژن سولفید، تهدید سلامتی و ایمنی، ایجاد خوردگی و آسیب به تأسیسات فلزی است. این پژوهش به‌منظور حذف هیدروژن سولفید از آب‌های ترش پالایشگاه تبریز و بازیافت مقدار بسیار زیادی آب و همچنین کاهش آلودگی هوای پالایشگاه انجام شد.‌ در این پژوهش تجربی و آزمایشگاهی با استفاده از روش جذب سطحی، تأثیر پارامترهای pH، مقدار جاذب، غلظت اولیه آلاینده، زمان تماس و دما بر فرایند حذف هیدروژن سولفید با استفاده از جاذب کلینوپتیلولیت بررسی شد و ترمودینامیک، سینتیک و ایزوترم فرایند جذب بررسی شد. از نتایج به‌دست آمده برای حذف H2S از آب ترش پالایشگاه تبریز استفاده شد. نتایج نشان داد مقدار بهینه pH، مقدار جاذب، غلظت اولیه آلاینده، زمان تماس و دما به‌ترتیب برابر با 3، 1 گرم در 100میلی‌لیتر محلول، 50 میلی‌گرم در لیتر، 30 دقیقه و 25 درجه سلسیوس بود. نتایج حاصل از بررسی ترمودینامیکی نشان داد که فرایند جذب گرماده، برگشت‌ناپذیر و خودبه‌خودی بود. نتایج تجربی نشان داد که سینتیک جذب با مدل شبه‌مرتبه دوم و ایزوترم جذب با مدل فروندولیچ برازش بهتری داشت. کارایی حذف هیدروژن سولفید بعد از عبور 100 میلی‌لیتر آب ترش از بستر ثابت در شرایط دمایی 25 درجه سلسیوس و در مدت 45 دقیقه برابر با 7/96 درصد بود. مطابق نتایج این پژوهش روش به‌کار برده شده، به‌دلیل سادگی عمل و کارایی زیاد و جاذب انتخاب شده به‌دلیل ارزانی، فراوانی، قابلیت احیا و افزایش کارایی با افزایش مقدار جاذب، می‌توانند به‌عنوان روش و جاذب مناسب برای حذف هیدروژن ‌سولفید از پساب‌ها و آب ترش پالایشگاه‌ها استفاده شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Removal of Hydrogen Sulfide from the Sour Water of Tabriz Refinery Using Clinoptilolite Zeolite Adsorbent

نویسندگان [English]

  • hassan esmaeilzadeh 1
  • Ebrahim Fataei 2
  • Hossein Saadati 3
1 PhD Student, Dept. of Environmental Sciences and Engineering, Ardabil Branch, Islamic Azad University, Ardabil, Iran
2 Assoc. Prof., Dept. of Environmental Sciences and Engineering, Ardabil Branch, Islamic Azad University, Ardabil, Iran
3 Assist. Prof., Dept. of Environmental Sciences and Engineering, Ardabil Branch, Islamic Azad University, Ardabil, Iran
چکیده [English]

Hydrogen sulfide (H2S) is a toxic, odorous, colorless, flammable and acidic gas. The main problems of hydrogen sulfide are the threat to health and safety, and causing corrosion and damage to metal installations. This study was conducted to remove hydrogen sulfide from the sour waters of Tabriz refinery and to recycle large amounts of water as well as to reduce air pollution in the refinery. In this experimental and laboratory study, the effect of pH, adsorbent content, initial concentration of pollutant, contact time and temperature on hydrogen sulfide removal process using clinoptilolite adsorbent was investigated. Thermodynamics, kinetics, and isotherms of adsorption process were studied. The results were used to remove H2S from the sour water of Tabriz refinery. The results showed that the optimal values of pH, absorbent value, initial pollutant concentration, contact time and temperature were 3, 1g/100 mL, 50 mg/L, 30 min and 25 oC, respectively. The results of thermodynamic studies showed that the adsorption process was exothermic, irreversible and spontaneous. The experimental data were better fitted to the pseudo-second order kinetics model and Freundlich isotherm model. After passing 100 ml of sour water from the fixed bed at 25 oC and 45 minutes, the removal efficiency was 96.7%. According to the results of this study, the proposed method due to its simplicity and high efficiency and the clinoptilolite due to its cheapness, abundance, ability to resuscitate and increase efficiency by enhancing the amount of clinoptilolite can be considered as an appropriate method and suitable adsorbent to remove hydrogen sulfide from the sour water of refineries and effluents.

کلیدواژه‌ها [English]

  • Pollutant Removal
  • Sour Water
  • Water Recovery
  • Surface adsorption
  • Clinoptilolite
  • Kinetic
  • Thermodynamic
Abbasghorbani, M. & Mashhadi, A. 2015. A review of sulphide scavengers in oil and gas industry. Iranian Gas Engineering, 1(2), 24-32. (In Persian)
Bobonich, F. M. 1995. Effect of chemical modification of clinoptilolite on the adsorption energy of dipolar and quadrupolar molecules. Theoretical and Experimental Chemistry, 31, 268-271.
Changjoo, Y. & Younghun, K. 2017. Adsorption of ammonia using mesoporous alumina prepared by a templating method. Journal of Environmental Engineering Research, 22, 401-406.
Dresser Industries, Inc. 2001. The Drilling Fluid Engineering Manual. Magcobar Division Pub., Houston, Texas, USA.
Eskandarian A., Sadatazad S., Rahmanisani A., Rastegar, A. & Alahabadi, R. 2017. Efficacy of activated carbon prepared from plantain modified with ammonium chloride in removal of amoxiciline from equeous solutions. Journal of Sabzevar University of Medical Sciences, 24(3), 183-189. (In Persian)
Gobi, K., Mashitah, M. D. & Vadivelu, V. M. 2011. Adsorptive removal of methylene blue using novel adsorbent from palm oil mill effluent waste activated sludge: equilibrium, thermodynamics and kinetic studies. Chemical Engineering Journal, 171, 1246-1252.
Gotovac, S., Song, L., Kanoh, H. & Kaneko, K., 2007. Assambly structure control of single wall carbon nanotubes with liquid phase naphthalene adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 300(1-2), 117-121.
Hudgins, C. M., McGlasson, R. L., Mehdlzadeh, P. & Rosborough, W. M. 1966. Hydrogen sulphide cracking of carbon and alloy steels. Corrosion, 22, 238-251.
Homayonfard, A., Miralinaghi, M., Haji Seyed Mohammad Shirazi, R. & Moniri, E. 2020. Removal of Cd(II) Ion from aqueous solution using nickel ferrite magnetic nanoparticles cross–linked chitosan. Journal of Water and Wastewater, 31(3), 112-127. (In Persian)
Keshvardoostchokami, M., Babaei, L., Zamani, A. A., Parizanganeh, A. H. & Piri, F. 2017. Synthesized chitosan/ iron oxide nanocomposite and shrimp shell in removal of nickel, cadmium and lead from aqueous solution. Global Journal of Environment Science Management, 3, 12.
Kumar, P. S., Ramalingam, S. & Sathishkumar, K. 2011. Removal of methylene blue dye from aqueous solution by activated carbon prerared from cashew nut shell as a new low-cost adsorben. Korean Journal of Chemical Engineering, 28, 149-155.
Lu, J., Li, Y., Yan, X., Shi, B., Wang, D. & Tang, H. 2009. Sorption of atrazine onto humic acids (HAs) coated nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347(1-3), 90-96.
Mohammadi, M., Mohammadi Torkashvand, A., Biparva, P. & Esfandiari, M. 2019. Synthesis ratios of Mg-Al and Zn-Al layered double hydroxides efficiency and selectivity in nitrate removal from solution. Global Journal of Environmental Science and Management, 5(4), 485-500.
Mohammadnia, M. & Naghizadeh, A. 2016. Surveying of kinetics, thermodynamic, and isotherm processes of fluoride removal from aqueous solutions using graphene oxide nano particles. Journal of Birjand University of Medical Sciences, 23(1), 29-43. (In Persian)
 
Mousavi, S. Z. & Lotfi, Z., 2011. Removal of nickel and cadmium from aqueous solution by modified magnetic nanoparticles. Journal of Water and Wastewater, 95(1), 2-11. (In Persian)
Naghizadeh, A., Nasseri, S., Rashidi, A. M., Rezaei Kalantary, R., Nabizadeh, R. & Mahvi, A. H. 2013. Adsorption kinetics and thermodynamics of hydrophobic natural organic matter (NOM) removal from aqueous solution by multi-wall carbon nanotubes. Water Science and Technology: Water Supply, 13(2), 273-285.
Nasuha, N., Hameed, H. B. & Mohd Din, A. T. 2010. Rejected tea as a potential low-cost adsorbent for the removal of methylene blue. Journal of Hazardous Materials, 175(1-3), 126-132.
Nguyen-Thanh, D. & Bandosz, T. J. 2005. Activated carbons with metal containing bentonite binders as adsorbents of hydrogen sulfide. Carbon, 43, 359-367.
Pirsaheb, M., Dargahi, A., Hazrati, S. & Fazlzadehdavil, M. 2014. Removal of diazinon and 2, 4- dichlorophenoxyacetic acid (2, 4-D) from aqueous solutions by granular-activated carbon. Journal of Desalination and Water Treatment, 52(22-24), 4350-4355.
Sivakumar, D., Nouri, J., Modhini, T. M. & Deepalakshmi, K. 2018. Nickel removal from electroplating industry wastewater: A bamboo activated carbon. Global Journal of Environmental Science and Management, 4(3), 325-338.
Sprynskyy, M., Buszewski, B., Terzyk, A. P. & Namieśnik, J. 2006. Study of the selection mechanism of heavy metal (Pb2+ , Cu2+ , Ni2+ , and Cd2+) adsorption on clinoptilolite. Journal of Colloid and Interface Science, 304(1), 21-28.
Tang, D. & Zhang, G. 2016. Efficient removal of fluoride by hierarchical Ce–Fe bimetal oxides adsorbent: thermodynamics, kinetics and mechanism. Chemical Engineering Journal, 283, 721-729.
U.S. Department of Health and Human Services, P. H. S. A. F. T. S. A. D. R. 2006. Toxicological profile for Hydrogen sulfide. Atlanta, Georgia, USA.
Wajima, T., Umeta, Y., Narita, S. & Sugawara, K. 2009. Adsorption behavior of fluoride ions using a titanium hydroxidederived adsorbent. Desalination, 249(1), 323-330.
Yaşyerli, S., Ar, İ., Doğu, G. & Doğu, T. 2002. Removal of hydrogen sulfide by clinoptilolite in a fixed bed adsorber. Chemical Engineering and Processing: Process Intensification, 41(9), 785-792.
Yu, G. H., Xu, X. J. & He, P. J. 2007. Isolates identification and characteristics of microorganisms in biotrickling filter and biofilter system treating H2S and NH3. Journal of Environmental Sciences, 19(7), 859-863.