جانمایی بهینه حسگرهای کیفی در شبکه‌های توزیع آب با عدم قطعیت محل و زمان ورود آلودگی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشگر، پژوهشکده آب و فاضلاب دانشگاه صنعتی اصفهان، اصفهان، ایران

2 پژوهشگر، پژوهشکده آینده‌پژوهی، دانشگاه بین‌المللی امام‌خمینی، قزوین، ایران

10.22093/wwj.2020.202339.2931

چکیده

ورود آلودگی به شبکه‌های توزیع آب، یکی از خطرناک‌ترین حوادث محتمل است که می‌تواند به‌صورت تصادفی یا عمدی باشد. با توجه به جریان آب در شبکه، این آلودگی به نقاط مختلف منتقل می‌شود و سلامت مردم را به خطر می‌اندازد. در این راستا، نصب حسگرهای کیفی یکی از مؤثرترین راهکارهاست. با تشخیص آلودگی توسط این حسگرها و اعمال سیاست‌های مناسب پس از آن، خسارت ناشی از مصرف آب آلوده کاهش می‌یابد. در این پژوهش، یک مدل بهینه‌ساز برای جانمایی بهینه محل حسگرهای کیفی ارائه شد. به این منظور، با توجه به عدم ‌قطعیت مربوط به محل ورود آلودگی و گام زمانی ورود آن، پارامتری با عنوان «بیشترین خسارت محتمل» معرفی شد. برای محاسبه این پارامتر، ابتدا ماتریس‌های خسارت برای همه مقادیر محتمل محل و گام زمانی ورود آلودگی و به کمک شبیه‌ساز EPANET محاسبه شدند. در ادامه این ماتریس‌ها در مدل بهینه‌ساز استفاده شده و طرح جانمایی حسگرها با هدف حداقل‌سازی بیشترین خسارت محتمل ارائه ‌شد. در این پژوهش از الگوریتم ژنتیک برای بهینه‌سازی استفاده شد. نتایج تحلیل یک شبکه نمونه به‌عنوان مورد مطالعاتی نشان داد جانمایی بهینه حسگر(های) کیفی بر اساس روش ارائه شده، تا حد زیادی توانست خسارت ناشی از ورود آلودگی به شبکه را کاهش دهد. به‌عنوان نمونه مشاهده ‌شد که اضافه کردن فقط یک یا دو حسگر کیفی در محل‌های بهینه، می‌تواند خسارت ناشی از آلوده شدن آب را به‌ترتیب تا 56 و 78 درصد کاهش دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Optimal Quality Sensor Placement in Water Distribution Networks under Temporal and Spatial Uncertain Contamination

نویسندگان [English]

  • Mohammadali Geranmehr 1
  • Mohammad Yousefi-Khoraem 2
1 Researcher at the Institute of Water and Wastewater at Isfahan University of Technology, Isfahan, Iran
2 Researcher at Research Institute for Future Studies, Imam Khomeini International University, Ghazvin, Iran
چکیده [English]

Contamination of a water distribution network (WDN) is one of the most dangerous events which may occur in accidental or deliberate conditions. The contamination spreads across the network based on the water flow and, as a result, has negative consequences on public health. In this regard, one of the most effective strategies is to install quality sensors. These sensors could reduce the damage due to detecting the contamination and applying appropriate policies. In this study, an optimization approach for quality sensor placement is presented. In this model, based on spatial and temporal uncertainty of input contaminant, a new parameter called maximum possible damage is introduced. Using EPANET as a hydraulic and quality simulator, the damage matrices are calculated for all possible values of temporal and spatial input contamination. In the following, these matrices are used in an optimization model in order to calculate the maximum possible damage. The genetic algorithm is implemented here to solve the problem.  The presented method is investigated on a case study network, and results show that this method could find the optimal sensor placement and reduce the damage caused by contamination. As an example, it can be seen that installing one or two sensors could reduce the contaminated water damage by 56% and 78%, respectively.

کلیدواژه‌ها [English]

  • water distribution networks
  • Quality Sensor
  • Contamination
  • optimization
  • Uncertainty
Adedoja, O. S., Hamam, Y., Khalaf, B. & Sadiku, R. 2018. A state-of-the-art review of an optimal sensor placement for contaminant warning system in a water distribution network. Urban Water Journal, 15, 985-1000.
Berry J. W., Hart William, E., Phillips Cindy, A. & Watson, J. P. 2008. A facility location approach to sensor placement optimization. Water Distribution Systems Analysis Symposium, 1-4.
Berry, J. W., Hart, William. E., Phillips, C. A., Uber, J. G. & Walski, T. M. 2005. Water quality sensor placement in water networks with budget constraints. Impacts of Global Climate Change. Anchorage, AK., 1-11.
Carr, R. D., Greenberg, H. J., Hart, W. E., Konjevod, G., Lauer, E., Lin, H., et al. 2006. Robust optimization of contaminant sensor placement for community water systems. Mathematical Programming, 107, 337-356.
Chang, N.-B., Pongsanone, N. P. & Ernest, A. 2011. Comparisons between a rule-based expert system and optimization models for sensor deployment in a small drinking water network. Expert Systems with Applications, 38, 10685-10695.
Chang, N.-B., Pongsanone, N. P. & Ernest, A. 2012. A rule-based decision support system for sensor deployment in small drinking water networks. Journal of Cleaner Production, 29-30, 28-37.
Ciaponi, C., Creaco, E., Di Nardo, A., Di Natale, M., Giudicianni, C., Musmarra, D., et al. 2019. Reducing impacts of contamination in water distribution networks: a combined strategy based on network partitioning and installation of water quality sensors. Water, 11, 1315.
Cozzolino, L., Morte, R. D., Palumbo, A. & Pianese, D. 2011. Stochastic approaches for sensors placement against intentional contaminations in water distribution systems. Civil Engineering and Environmental Systems, 28, 75-98.
Diao, K. & Rauch, W. 2013. Controllability analysis as a pre-selection method for sensor placement in water distribution systems. Water Research, 47, 6097-6108.
Dorini, G., Jonkergouw, P., Kapelan, Z., Di Pierro, F., Khu, S. T. & Savic, D. 2008. An efficient algorithm for sensor placement in water distribution systems. Water Distribution Systems Analysis Symposium, 1-13.
Eliades, D. & Polycarpou, M. 2008. Iterative deepening of pareto solutions in water sensor networks. Water Distribution Systems Analysis Symposium, 1-19.
Ghimire Santosh, R. & Barkdoll Brian, D. 2008a. Heuristic method for the battle of the water network sensors: demand based approach. Water Distribution Systems Analysis Symposium, 1-11.
Ghimire Santosh, R. & Barkdoll Brian, D. 2008b. A heuristic method for water quality sensor location in a municipal water distribution system: mass-released based approach. Water Distribution Systems Analysis Symposium, 1-11.
Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Longman, Menlo Park, CA.
Guan, J., Aral Mustafa, M., Maslia Morris, L. & Grayman Walter, M. 2008. Optimization model and algorithms for design of water sensor placement in water distribution systems. Water Distribution Systems Analysis Symposium, 1-16.
Gueli, R. 2008. Predator - prey model for discrete sensor placement. Water Distribution Systems Analysis Symposium, 1-9.
He, G., Zhang, T., Zheng, F. & Zhang, Q. 2018. An efficient multi-objective optimization method for water quality sensor placement within water distribution systems considering contamination probability variations. Water Research, 143, 165-175.
Hooshmand, F., Amerehi, F. & Mirhassani, S. A. 2020. Logic-based benders decomposition algorithm for contamination detection problem in water networks. Computers and Operations Research, 115, 104840.
Hu, C., Dai, L., Yan, X., Gong, W., Liu, X. & Wang, L. 2020. Modified NSGA-III for sensor placement in water distribution system. Information Sciences, 509, 488-500.
Hu, C., Li, M., Zeng, D. & Guo, S. 2016. A survey on sensor placement for contamination detection in water distribution systems. Wireless Networks, 24, 647-661.
Huang Jinhui, J., Mcbean Edward, A. & James, W. 2008. Multi-objective optimization for monitoring sensor placement in water distribution systems. Water Distribution Systems Analysis Symposium, 1-14.
Irivpsps 2011. Guidelines for design of urban and rural water supply and distribution systems, Report No. 117-3 (First Revision), Islamic Republic of Iran Vice Presidency for Strategic Planning and Supervision Press, Iran. (In Persian).
Isiri 2010. Drinking water - Physical and chemical specifications, Standard No. 1053 (Fifth Revision), Institute of Standards and Industrial Research of Iran Press, Iran. (In Persian).
Kessler, A., Ostfeld, A. & Sinai, G. 1998. Detecting accidental contaminations in municipal water networks. Journal of Water Resources Planning and Management, 124, 192-198.
Krause, A., Leskovec, J., Guestrin, C., Vanbriesen, J. & Faloutsos, C. 2008. Efficient sensor placement optimization for securing large water distribution networks. Journal of Water Resources Planning and Management, 134, 516-526.
Krause, A., Leskovec, J., Isovitsch, S., Xu, J., Guestrin, C., Vanbriesen, J., et al. 2008. Optimizing sensor placements in water distribution systems using submodular function maximization. Water Distribution Systems Analysis Symposium, 1-17.
Łangowski, R., Brdys, M. A. & Qi, R. 2012. Optimised robust placement of hard quality sensors for robust monitoring of quality in drinking water distribution systems. Proceedings of the 10th World Congress on Intelligent Control and Automation, 1109-1114.
Liu, S. & Auckenthaler, P. 2013. Optimal sensor placement for event detection and source identification in water distribution networks. Journal of Water Supply: Research and Technology-Aqua, 63, 51-57.
Ma, X., Song, Y., Huang, J. & Wu, J. Robust sensor placement problem in municipal water networks.  2010. Third International Joint Conference on Computational Science and Optimization, 291-294.
Ostfeld, A. & Salomons, E. 2008. Sensor network design proposal for the battle of the water sensor networks (BWSN). Water Distribution Systems Analysis Symposium, 1-16.
Ostfeld, A., Uber, J. G., Salomons, E., Berry, J. W., Hart, W. E., Phillips, C. A., et al. 2008. The battle of the water sensor networks (BWSN): a design challenge for engineers and algorithms. Journal of Water Resources Planning and Management, 134, 556-568.
Preis, A. & Ostfeld, A. 2008. Multiobjective sensor design for water distribution systems security. Water Distribution Systems Analysis Symposium, 1-17.
Propato, M. & Piller, O. 2008. Battle of the water sensor networks. Water Distribution Systems Analysis Symposium, 1-16.
Rico-Ramirez, V., Frausto-Hernandez, S., Diwekar, U. M. & Hernandez-Castro, S. 2007. Water networks security: A two-stage mixed-integer stochastic program for sensor placement under uncertainty. Computers and Chemical Engineering, 31, 565-573.
Rossman, L. A. 2000. EPANET 2 user’s manual, United States Environmental Protection Agency, Cincinnati, USA.
Shen, H. & Mcbean, E. 2011. Diminishing marginal returns for sensor networks in a water distribution system. Journal of Water Supply: Research and Technology-Aqua, 60, 286-293.
Tabesh, M. 2016. Advanced modeling of water distribution networks, University of Tehran Press, Tehran, Iran. (In Persian).
Tabesh, M., Azadi, B. & Roozbahani, A. 2011. Quality management of water distribution networks by optimizing dosage and location of chlorine injection. International Journal of Environmental Research, 5, 321-332.
Trachtman, G. B. 2008. A ''strawman'' common sense approach for water quality sensor site selection. Water Distribution Systems Analysis Symposium, Cincinnati, OH, 1-13.
Watson, J.-P., Murray, R. & Hart William, E. 2009. Formulation and optimization of robust sensor placement problems for drinking water contamination warning systems. Journal of Infrastructure Systems, 15, 330-339.
Weickgenannt, M., Kapelan, Z., Blokker, M. & Savic, D. A. 2010. Risk-based sensor placement for contaminant detection in water distribution systems. Journal of Water Resources Planning and Management, 136, 629-636.
Winter, C. D., Palleti, V. R., Worm, D. & Kooij, R. 2019. Optimal placement of imperfect water quality sensors in water distribution networks. Computers and Chemical Engineering, 121, 200-211.
Wu Zheng, Y. & Walski, T. 2008. Multi-objective optimization of sensor placement in water distribution systems. Water Distribution Systems Analysis Symposium, 1-11.
Xu, J., Fischbeck, P. S., Small, M. J., Vanbriesen, J. M. & Casman, E. 2008. Identifying sets of key nodes for placing sensors in dynamic water distribution networks. Journal of Water Resources Planning and Management, 134, 378-385.
Xu, J., Johnson, M. P., Fischbeck, P. S., Small, M. J. & Vanbriesen, J. M. 2010. Robust placement of sensors in dynamic water distribution systems. European Journal of Operational Research, 202, 707-716.